Temperature effect on mechanical and tribological properties of WNiCoFe alloy powder for cutting tools

Author(s):  
Xinfeng Ge

In order to improve the wear resistance of WNiCoFe alloy for cutting tools, WNiCoFe alloy powder is prepared by multiple metals electrolysis, alloy powder and its sintered morphology is observed and phase is analyzed using X-ray diffractometer and scanning electron microscope (SEM), the effect of sintering temperature on its physical mechanics and friction properties was studied. The results show that the prepared WNiCoFe alloy powder is alloyed to some extent, irregular and finer particle size, the diffraction peaks of Co3Fe7 and Fe19Ni are formed in addition to the elemental Fe; the maximum hardness of the sintered is 107.6HRB, the maximum bending strength at three points is 1638.3 mpa, the maximum density is 96.2%, and wear loss is 0.498–0.555 g when WNiCoFe alloy powder is sintered at 800∘C. Diamond tools are made with WNiCoFe alloy powder as the main matrix composition, and cut hard stone, cutting velocity is 8.6 m2/h and life is 11.3 m2/m, which has a good comprehensive performance.

2013 ◽  
Vol 834-836 ◽  
pp. 285-289
Author(s):  
Chun Guang Long ◽  
Yang Su ◽  
Chao Shen

A new type of interpenetrating phase composites (IPC) was prepared by impregnating open-cell aluminum foam (AF) with polyoxymethylene (POM) through an injection molding process, and their mechanical properties has been investigated. It shows relatively high bending strength and impact strength with compared to the pure AF and POM. With the addition of 10wt% polytetrafluoroethylene (PTFE) to POM, the mechanical properties of the IPC are further improved . On the other hand, Tribological tests of IPC were carried out with a pin-disk machine, and their worn surfaces were characterized by scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS) to explore the wear mechanism. Results show that the friction coefficient of AF/POM/PTFE IPC is about 12.7% lower than that of AF/POM IPC and the wear loss reduced by 33.3%. The reason of the increase in the wear resistance can be explained by the transfer film which delays the wear process.


Coatings ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 841
Author(s):  
Yanmei Liu ◽  
Tie-Gang Wang ◽  
Wei Lin ◽  
Qiang Zhu ◽  
Bing Yan ◽  
...  

Aluminum rich nitride coatings are often used to protect cutting tools and prolong their service life. In this work, a preoxidation technique and duplex coating design were combined to further improve the bearing capacity and heat resistance of cutting tools. The Al-Cr-Si-N, Al-Cr-Si-O-N, and Al-Cr-Si-N/Al-Cr-Si-O-N duplex coatings were developed by arc ion plating, respectively. The morphology, phase constituents, mechanical and tribological properties of the coatings were characterized and tested by SEM, XRD, a micro-hardness tester, scratch tester, and tribometer. The results showed the coating became more compact and smoother after oxygen doping. However, the Al-Cr-Si-N coating presented the best mechanical properties and tribological behaviors. Its hardness and critical load showed the highest values, which were about 4000 HV and 81 N, respectively. A friction coefficient of 0.67 and wear rate of 1.4 × 10−3 μm3/N·mm were also the lowest values in the study. The three coatings were deposited on the same solid carbide end mills and performed the cutting tests under same conditions. By comparison, the Al-Cr-Si-N coated tool presented the longest tool life and minimum cutting force when cutting C1045 medium-carbon steel. After 90 min of dry milling, the width of the flank wear band (VB) of the AlCrSiN coated tool reached 135 μm, which was much lower than that of the other two coated tools.


2007 ◽  
Vol 534-536 ◽  
pp. 1089-1092
Author(s):  
Mituyoshi Nagano ◽  
Hideaki Sano ◽  
Shigeya Sakaguchi ◽  
Guo Bin Zheng ◽  
Yasuo Uchiyama

The effect of oxygen addition on oxidation behavior of the β-Si3N4 ceramics with 5 mass% Y2O3 and 2 or 4 mass% Al2O3 was investigated by performing oxidation tests in air at 1300° to 1400°C and cutting performance tests. These tests were intended to clarify their ware resistance as cutting tools. The results of mass change, SEM observation and composition analysis of the specimens before and after oxidation test showed that as the Al2O3 content in the β-Si3N4 ceramics increased, mass changes resulted higher oxidation during which process pores and cracks formed due to the release of N2 gas. The values of hardness and bending strength of the specimens with relatively small amount of 2 mass% Al2O3, which formed solid solution in the Si3N4 structure [Si6-zAlzOzN8-z (z = 0.1)], showed larger than those of the specimen with 4 mass% Al2O3 (z = 0.2). The specimens group added with Al2O3 of 2 mass% (Z = 0.1) also showed high wear resistance. From this, we could conclude that the mechanical properties of β-Si3N4 ceramics depending on oxygen introduction is much effective on cutting performance improvements of the cutting performance of β-Si3N4 ceramics.


2011 ◽  
Vol 695 ◽  
pp. 417-420 ◽  
Author(s):  
Hyun Hwi Lee ◽  
Seung Ho Kim ◽  
Bhupendra Joshi ◽  
Soo Wohn Lee

Oxide ceramics such as alumina and zirconia are industrially utilized as cutting tools, a variety of bearings, biomaterials, and thermal and corrosion-resistant coatings due to their high hardness, chemical inertness, high melting point, and ability to retain mechanical strength at elevated temperatures. In this research, the effect of other ceramic additives (TiO2) and h-BN within alumina(α-Al2O3) and yttria-stabilized tetragonal (Y-TZP) composite was studied with respect to the mechanical and tribological properties. The lowest coefficient of frction of 0.45 was observed for the ZTA ceramic composite with hBN-TiO2. The highest hardness, fracture toughness and flexural strength were obtained as 15.7GPa, 5.2MPam-1/2, 712MPa, respectively.


2009 ◽  
Vol 83-86 ◽  
pp. 704-710 ◽  
Author(s):  
H. Shahali ◽  
Hamid Zarepour ◽  
Esmaeil Soltani

In this paper, the effect of machining parameters including cutting velocity, feed rate, and tool material on machining power of EN-AC 48000 aluminium alloy has been studied. A L27 Taguchi's standard orthogonal array has been applied as experimental design to investigate the effect of the factors and their interaction. Twenty seven machining tests have been accomplished with two random repetitions, resulting in fifty four experiments. EN-AC 48000 is an important alloy in automotive and aerospace industries. Machining of this alloy is of vital importance due to build-up edge and tool wear. Machining power is an essential parameter affecting the tool life, dimensional accuracy, and cutting efficiency. Three types of cutting tools including coated carbide (CD 1810), uncoated carbide (H10), and polycrystalline diamond (CD10) have been used in this study. Statistical analysis has been employed to study the effect of factors and their interactions using ANOVA analysis. Moreover, optimal factor levels have been presented using signal to noise ratio (S/N) analysis. Also, regression model have been provided to predict the machining power. Finally, the results of confirmation tests have been presented to verify and compare the adequacy of the predictive models.


2021 ◽  
Vol 16 (1) ◽  
pp. 43-48
Author(s):  
Michal Krbaťa ◽  
◽  
Jana Escherová ◽  

The paper deals with the change in mechanical properties and wear of 1.2842 universal tool steel after plasma nitriding, which is widely used to produce cutting tools with good durability and low operating costs. Plasma nitriding was performed at a temperature of 500 °C for 10-hour period in a standard N2 /H2 atmosphere with 1:3 gases ratio. Microstructure, phase structure, thickness of a nitriding layer and surface roughness of samples were measured with optical microscopes and a profilometer. Verification of a chemical composition was carried out on the BAS TASMAN Q4 device. Wear resistance was measured on a universal TRIBOLAB UTM 3 tribometer, through a, “pin on disc“ method. The results of experiments have shown that plasma nitriding process, significantly improves the mechanical and tribological properties of selected materials.


Coatings ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 287 ◽  
Author(s):  
Marina Volosova ◽  
Sergey Grigoriev ◽  
Alexander Metel ◽  
Alexander Shein

The main problem with ceramics used in cutting tools is related to the unpredictable failures caused by the brittle fracturing of ceramic inserts, which is critical for the intermittent milling of cyclic loading. A 125-mm-diameter eight-toothed end mill, with a mechanical fastening of ceramic inserts, was used as a cutting tool for milling hardened steel (102Cr6). For the experiments, square inserts of the Al2O3 + SiC ceramic were used and compared with the samples made of Al2O3 + TiC to confirm the obtained results. The samples were coated with diamond-like coating (DLC), TiZrN, and TiCrAlN coatings, and their bending strength and adhesion were investigated. Investigations into the friction coefficient of the samples and operational tests were also carried out. The effect of smoothing the microroughness and surface defects in comparison with uncoated inserts, which are characteristic of the abrasive processing of ceramics, was investigated and analyzed. The process developed by the authors of the coating process allows for the cleaning and activation of the surface of ceramic inserts using high-energy gas atoms. The impact of these particles on the cutting edge of the insert ensures its sharpening and reduces the radius of curvature of its cutting edges.


2020 ◽  
Vol 37 (1−2) ◽  
Author(s):  
SRIDHAR ATLA ◽  
Prasanna Lakshmi Kaujala

The aluminium metal matrix composite reinforced with ceramic material of Silicon carbide (SiC) has good mechanical properties. However, aluminium based ceramic composites require improvements in their lubrication and tribological properties. In this study an attempt is made in the development of a new material through powder metallurgy technique by the addition of Graphite, which acts as a solid lubricant. This work investigated the influence of graphite on the wear behaviour of Al 7075/SiC /X wt.% graphite(X=0, 5 and 10) hybrid composite. The investigation reveals the effectiveness of incorporation of graphite in the composite for gaining wear reduction. The Al 7075 (aluminium alloy 7075) reinforced with SiC –graphite were investigated. The composites were fabricated using powder metallurgy route. The microstructures, material combination, wear and friction properties were analysed by scanning electron microscopy, XRD, and pin-on-disc wear tester. The newly developed aluminium composite has significant improvements in tribological properties with a combination of 5% Silicon carbide (SiC) and 5% Graphite. The test reveals that sliding distance of 1000 m and sliding speed of 1.5 m/s with applied load of 5 N result in minimum wear loss of 0.01062g and coefficient of friction as 0.1278.


Sign in / Sign up

Export Citation Format

Share Document