Violence recognition using convolutional neural network: A survey

2020 ◽  
Vol 39 (5) ◽  
pp. 7931-7952
Author(s):  
Gaurav Tripathi ◽  
Kuldeep Singh ◽  
Dinesh Kumar Vishwakarma

Violence detection is a challenging task in the computer vision domain. Violence detection framework depends upon the detection of crowd behaviour changes. Violence erupts due to disagreement of an idea, injustice or severe disagreement. The aim of any country is to maintain law and order and peace in the area. Violence detection thus becomes an important task for authorities to maintain peace. Traditional methods have existed for violence detection which are heavily dependent upon hand crafted features. The world is now transitioning in to Artificial Intelligence based techniques. Automatic feature extraction and its classification from images and videos is the new norm in surveillance domain. Deep learning platform has provided us the platter on which non-linear features can be extracted, self-learnt and classified as per the appropriate tool. One such tool is the Convolutional Neural Networks, also known as ConvNets, which has the ability to automatically extract features and classify them in to their respective domain. Till date there is no survey of deciphering violence behaviour techniques using ConvNets. We hope that this survey becomes an exclusive baseline for future violence detection and analysis in the deep learning domain.

Author(s):  
Rasmita Lenka ◽  
Koustav Dutta ◽  
Ashimananda Khandual ◽  
Soumya Ranjan Nayak

The chapter focuses on application of digital image processing and deep learning for analyzing the occurrence of malaria from the medical reports. This approach is helpful in quick identification of the disease from the preliminary tests which are carried out in a person affected by malaria. The combination of deep learning has made the process much advanced as the convolutional neural network is able to gain deeper insights from the medical images of the person. Since traditional methods are not able to detect malaria properly and quickly, by means of convolutional neural networks, the early detection of malaria has been possible, and thus, this process will open a new door in the world of medical science.


News is a routine in everyone's life. It helps in enhancing the knowledge on what happens around the world. Fake news is a fictional information madeup with the intension to delude and hence the knowledge acquired becomes of no use. As fake news spreads extensively it has a negative impact in the society and so fake news detection has become an emerging research area. The paper deals with a solution to fake news detection using the methods, deep learning and Natural Language Processing. The dataset is trained using deep neural network. The dataset needs to be well formatted before given to the network which is made possible using the technique of Natural Language Processing and thus predicts whether a news is fake or not.


One of the most deadly diseases in the world is Heart Disease. The dysfunctionality of the heart at the early stage can be detected using iridology. The study of iridology describes the structure of the human iris as an observation of the condition of organs in the body. In this article, we explore the heart condition through a series of stages such as iris localization, segmentation, extraction of region of interest, histogram equalization and classification using convolutional neural network. The results are evaluated using various quality metrics such as precision, recall, f-score & accuracy.


2020 ◽  
Author(s):  
Vruddhi Shah ◽  
Rinkal Keniya ◽  
Akanksha Shridharani ◽  
Manav Punjabi ◽  
Jainam Shah ◽  
...  

Early diagnosis of the coronavirus disease in 2019 (COVID-19) is essential for controlling this pandemic. COVID-19 has been spreading rapidly all over the world. There is no vaccine available for this virus yet. Fast and accurate COVID-19 screening is possible using computed tomography (CT) scan images. The deep learning techniques used in the proposed method was based on a convolutional neural network (CNN). Our manuscript focuses on differentiating the CT scan images of COVID-19 and non-COVID 19 CT using different deep learning techniques. A self developed model named CTnet-10 was designed for the COVID-19 diagnosis, having an accuracy of 82.1 %. Also, other models that we tested are DenseNet-169, VGG-16, ResNet-50, InceptionV3, and VGG-19. The VGG-19 proved to be superior with an accuracy of 94.52 % as compared to all other deep learning models. Automated diagnosis of COVID-19 from the CT scan pictures can be used by the doctors as a quick and efficient method for COVID-19 screening.


2020 ◽  
Vol 12 (10) ◽  
pp. 1581 ◽  
Author(s):  
Daniel Perez ◽  
Kazi Islam ◽  
Victoria Hill ◽  
Richard Zimmerman ◽  
Blake Schaeffer ◽  
...  

Coastal ecosystems are critically affected by seagrass, both economically and ecologically. However, reliable seagrass distribution information is lacking in nearly all parts of the world because of the excessive costs associated with its assessment. In this paper, we develop two deep learning models for automatic seagrass distribution quantification based on 8-band satellite imagery. Specifically, we implemented a deep capsule network (DCN) and a deep convolutional neural network (CNN) to assess seagrass distribution through regression. The DCN model first determines whether seagrass is presented in the image through classification. Second, if seagrass is presented in the image, it quantifies the seagrass through regression. During training, the regression and classification modules are jointly optimized to achieve end-to-end learning. The CNN model is strictly trained for regression in seagrass and non-seagrass patches. In addition, we propose a transfer learning approach to transfer knowledge in the trained deep models at one location to perform seagrass quantification at a different location. We evaluate the proposed methods in three WorldView-2 satellite images taken from the coastal area in Florida. Experimental results show that the proposed deep DCN and CNN models performed similarly and achieved much better results than a linear regression model and a support vector machine. We also demonstrate that using transfer learning techniques for the quantification of seagrass significantly improved the results as compared to directly applying the deep models to new locations.


2020 ◽  
Vol 117 (42) ◽  
pp. 26398-26405 ◽  
Author(s):  
Davide Valeriani ◽  
Kristina Simonyan

Isolated dystonia is a neurological disorder of heterogeneous pathophysiology, which causes involuntary muscle contractions leading to abnormal movements and postures. Its diagnosis is remarkably challenging due to the absence of a biomarker or gold standard diagnostic test. This leads to a low agreement between clinicians, with up to 50% of cases being misdiagnosed and diagnostic delays extending up to 10.1 y. We developed a deep learning algorithmic platform, DystoniaNet, to automatically identify and validate a microstructural neural network biomarker for dystonia diagnosis from raw structural brain MRIs of 612 subjects, including 392 patients with three different forms of isolated focal dystonia and 220 healthy controls. DystoniaNet identified clusters in corpus callosum, anterior and posterior thalamic radiations, inferior fronto-occipital fasciculus, and inferior temporal and superior orbital gyri as the biomarker components. These regions are known to contribute to abnormal interhemispheric information transfer, heteromodal sensorimotor processing, and executive control of motor commands in dystonia pathophysiology. The DystoniaNet-based biomarker showed an overall accuracy of 98.8% in diagnosing dystonia, with a referral of 3.5% of cases due to diagnostic uncertainty. The diagnostic decision by DystoniaNet was computed in 0.36 s per subject. DystoniaNet significantly outperformed shallow machine-learning algorithms in benchmark comparisons, showing nearly a 20% increase in its diagnostic performance. Importantly, the microstructural neural network biomarker and its DystoniaNet platform showed substantial improvement over the current 34% agreement on dystonia diagnosis between clinicians. The translational potential of this biomarker is in its highly accurate, interpretable, and generalizable performance for enhanced clinical decision-making.


2020 ◽  
Author(s):  
Raju Singh

This report is an insight into the world of deep learning and CNN networks. It is an attempt to perform classification using neural network and deep learning for a given dataset (which is a subset from the MNIST dataset). The MNIST dataset contains 70,000 images of handwritten digits, divided into 60,000 training images and 10,000 testing images.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 3711-3715

Noticing about the buried pipes is a important issue, In many regions of the world. In spite of the fact that several techniques are there. This literature is used to find out the underground pipes automatically that provides accuracy execution is underway. Which gave amazing results Achieved by the deep learning of the different discoveries found in this article offer a pipeline to detect anti-personnel pipes Adaptive Neural Networks ( applied to the Ground Penetrating Radar (GPR). The proposed algorithm is suitable to recognize if the scanning format has been received. The acquisition of GPR has a track of anti-personnel pipes. The validity of the said system is made on a real GPR receipt, although systematic training can be done to have relied upon data generated by achievements. Based on the results 95% of the accuracy of detection got achieved without testing acquisition of pipes.


Author(s):  
Anuraag Velamati Et.al

The world is quickly and continuously advancing towards better technological advancements that will make life quite easier for us, human beings [22]. Humans are looking for more interactive and advanced ways to improve their learning. One such dream is making a machine think like a computer, which lead to innovations like AI and deep learning [25]. The world is running at a higher pace in the domain of AI, deep learning, robotics and machine learning Using this knowledge and technology, we could develop anything right now [36]. As a part of sub-domain, the introduction of Convolution Neural Networks made deep learning extensively strong in the domain of image classification and detection [1]..The research that we have conducted is one of its kind. Our research used Convolution Neural Network, TensorFlow and Keras.


Author(s):  
NOR KUMALASARI CAECAR PRATIWI ◽  
NUR IBRAHIM ◽  
YUNENDAH NUR FU’ADAH ◽  
SYAMSUL RIZAL

ABSTRAKParasit plasmodium merupakan makhluk protozoa bersel satu yang menjadi penyebab penyakit malaria. Plasmodium ini dibawa melalui gigitan nyamuk anopheles betina. Dalam World Malaria Report 2015 menyatakan bahwa malaria telah menyerang sedikit 106 negara di dunia. Di Indonesia sendiri, Papua, NTT dan Maluku merupakan wilayah dengan kasus positif malaria tertinggi. Malaria telah menjadi masalah yang serius, sehingga keberadaan sistem diagnosa otomatis yang cepat dan handal sangat diperlukan untuk proses perlambatan penyeberan dan pembasmian epidemi. Dalam penelitian ini akan dirancang sistem yang mampu mendeteksi parasit malaria pada citra mikroskopis darah menggunakan arsitekur Convolutional Neural Network (CNN) sederhana. Hasil pengujian menunjukkan bahwa metode yang diusulkan memberikan presisi dan recall sebesar 0,98 dan f1-score sebesar 0,96 serta akurasi 95,83%.Kata kunci: parasit, malaria, convolutional neural network, citra mikroskopis ABSTRACTPlasmodium parasites are single-celled protozoan creatures that cause malaria. Plasmodium is carried through the bite of a female Anopheles mosquito. The World Malaria Report 2015 states that malaria has attacked at least 106 countries in the world. In Indonesia itself, Papua, NTT and Maluku are the regions with the highest positive cases of malaria. Malaria has become a serious problem, so the existence of a fast and reliable automatic diagnosis system is indispensable for the process of slowing down the spread and eliminating the epidemic. In this study, a system capable of detecting malaria parasites in microscopic images of blood will be designed using a simple Convolutional Neural Network (CNN) architecture. The test results show that the proposed method provides precision and recall of 0,98, f1-values of 0.96 and accuracy of 95,83%.Keywords: parasites, malaria, convolutional neural network, microscopic image


Sign in / Sign up

Export Citation Format

Share Document