An effective community-based link prediction model for improving accuracy in social networks

2021 ◽  
pp. 1-17
Author(s):  
M. Mohamed Iqbal ◽  
K. Latha

Link prediction plays a predominant role in complex network analysis. It indicates to determine the probability of the presence of future links that depends on available information. The existing standard classical similarity indices-based link prediction models considered the neighbour nodes have a similar effect towards link probability. Nevertheless, the common neighbor nodes residing in different communities may vary in real-world networks. In this paper, a novel community information-based link prediction model has been proposed in which every neighboring node’s community information (community centrality) has been considered to predict the link between the given node pair. In the proposed model, the given social network graph can be divided into different communities and community centrality is calculated for every derived community based on degree, closeness, and betweenness basic graph centrality measures. Afterward, the new community centrality-based similarity indices have been introduced to compute the community centralities which are applied to nine existing basic similarity indices. The empirical analysis on 13 real-world social networks datasets manifests that the proposed model yields better prediction accuracy of 97% rather than existing models. Moreover, the proposed model is parallelized efficiently to work on large complex networks using Spark GraphX Big Data-based parallel Graph processing technique and it attains a lesser execution time of 250 seconds.

Author(s):  
Shubham Gupta ◽  
Gaurav Sharma ◽  
Ambedkar Dukkipati

Networks observed in real world like social networks, collaboration networks etc., exhibit temporal dynamics, i.e. nodes and edges appear and/or disappear over time. In this paper, we propose a generative, latent space based, statistical model for such networks (called dynamic networks). We consider the case where the number of nodes is fixed, but the presence of edges can vary over time. Our model allows the number of communities in the network to be different at different time steps. We use a neural network based methodology to perform approximate inference in the proposed model and its simplified version. Experiments done on synthetic and real world networks for the task of community detection and link prediction demonstrate the utility and effectiveness of our model as compared to other similar existing approaches.


2020 ◽  
Vol 117 (38) ◽  
pp. 23393-23400 ◽  
Author(s):  
Amir Ghasemian ◽  
Homa Hosseinmardi ◽  
Aram Galstyan ◽  
Edoardo M. Airoldi ◽  
Aaron Clauset

Most real-world networks are incompletely observed. Algorithms that can accurately predict which links are missing can dramatically speed up network data collection and improve network model validation. Many algorithms now exist for predicting missing links, given a partially observed network, but it has remained unknown whether a single best predictor exists, how link predictability varies across methods and networks from different domains, and how close to optimality current methods are. We answer these questions by systematically evaluating 203 individual link predictor algorithms, representing three popular families of methods, applied to a large corpus of 550 structurally diverse networks from six scientific domains. We first show that individual algorithms exhibit a broad diversity of prediction errors, such that no one predictor or family is best, or worst, across all realistic inputs. We then exploit this diversity using network-based metalearning to construct a series of “stacked” models that combine predictors into a single algorithm. Applied to a broad range of synthetic networks, for which we may analytically calculate optimal performance, these stacked models achieve optimal or nearly optimal levels of accuracy. Applied to real-world networks, stacked models are superior, but their accuracy varies strongly by domain, suggesting that link prediction may be fundamentally easier in social networks than in biological or technological networks. These results indicate that the state of the art for link prediction comes from combining individual algorithms, which can achieve nearly optimal predictions. We close with a brief discussion of limitations and opportunities for further improvements.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Xu Zhang ◽  
Yurong Song ◽  
Haiyan Wang ◽  
Guo-Ping Jiang

In social networks, the age and the region of individuals are the two most important factors in modeling infectious diseases. In this paper, a spatial susceptible-infected-susceptible (SIS) model is proposed to describe epidemic spreading over a network with region and age by establishing several partial differential equations. Numerical simulations are performed, and the simulation of the proposed model agrees well with real influenza-like illness (ILI) in the USA reported by the Centers for Disease Control (CDC). Moreover, the proposed model can be used to predict the infected density of individuals. The results show that our model can be used as a tool to analyze influenza cases in the real world.


2016 ◽  
Vol 43 (2) ◽  
pp. 204-220 ◽  
Author(s):  
Maryam Hosseini-Pozveh ◽  
Kamran Zamanifar ◽  
Ahmad Reza Naghsh-Nilchi

One of the important issues concerning the spreading process in social networks is the influence maximization. This is the problem of identifying the set of the most influential nodes in order to begin the spreading process based on an information diffusion model in the social networks. In this study, two new methods considering the community structure of the social networks and influence-based closeness centrality measure of the nodes are presented to maximize the spread of influence on the multiplication threshold, minimum threshold and linear threshold information diffusion models. The main objective of this study is to improve the efficiency with respect to the run time while maintaining the accuracy of the final influence spread. Efficiency improvement is obtained by reducing the number of candidate nodes subject to evaluation in order to find the most influential. Experiments consist of two parts: first, the effectiveness of the proposed influence-based closeness centrality measure is established by comparing it with available centrality measures; second, the evaluations are conducted to compare the two proposed community-based methods with well-known benchmarks in the literature on the real datasets, leading to the results demonstrate the efficiency and effectiveness of these methods in maximizing the influence spread in social networks.


2017 ◽  
Vol 28 (03) ◽  
pp. 1750033 ◽  
Author(s):  
Peng Luo ◽  
Chong Wu ◽  
Yongli Li

Link prediction measures have been attracted particular attention in the field of mathematical physics. In this paper, we consider the different effects of neighbors in link prediction and focus on four different situations: only consider the individual’s own effects; consider the effects of individual, neighbors and neighbors’ neighbors; consider the effects of individual, neighbors, neighbors’ neighbors, neighbors’ neighbors’ neighbors and neighbors’ neighbors’ neighbors’ neighbors; consider the whole network participants’ effects. Then, according to the four situations, we present our link prediction models which also take the effects of social characteristics into consideration. An artificial network is adopted to illustrate the parameter estimation based on logistic regression. Furthermore, we compare our methods with the some other link prediction methods (LPMs) to examine the validity of our proposed model in online social networks. The results show the superior of our proposed link prediction methods compared with others. In the application part, our models are applied to study the social network evolution and used to recommend friends and cooperators in social networks.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Saeed Reza Shahriary ◽  
Mohsen Shahriari ◽  
Rafidah MD Noor

In signed social networks, relationships among nodes are of the types positive (friendship) and negative (hostility). One absorbing issue in signed social networks is predicting sign of edges among people who are members of these networks. Other than edge sign prediction, one can define importance of people or nodes in networks via ranking algorithms. There exist few ranking algorithms for signed graphs; also few studies have shown role of ranking in link prediction problem. Hence, we were motivated to investigate ranking algorithms availed for signed graphs and their effect on sign prediction problem. This paper makes the contribution of using community detection approach for ranking algorithms in signed graphs. Therefore, community detection which is another active area of research in social networks is also investigated in this paper. Community detection algorithms try to find groups of nodes in which they share common properties like similarity. We were able to devise three community-based ranking algorithms which are suitable for signed graphs, and also we evaluated these ranking algorithms via sign prediction problem. These ranking algorithms were tested on three large-scale datasets: Epinions, Slashdot, and Wikipedia. We indicated that, in some cases, these ranking algorithms outperform previous works because their prediction accuracies are better.


Author(s):  
Akrati Saxena ◽  
George Fletcher ◽  
Mykola Pechenizkiy

AbstractThe evolution of online social networks is highly dependent on the recommended links. Most of the existing works focus on predicting intra-community links efficiently. However, it is equally important to predict inter-community links with high accuracy for diversifying a network. In this work, we propose a link prediction method, called HM-EIICT, that considers both the similarity of nodes and their community information to predict both kinds of links, intra-community links as well as inter-community links, with higher accuracy. The proposed framework is built on the concept that the connection likelihood between two given nodes differs for inter-community and intra-community node-pairs. The performance of the proposed methods is evaluated using link prediction accuracy and network modularity reduction. The results are studied on real-world networks and show the effectiveness of the proposed method as compared to the baselines. The experiments suggest that the inter-community links can be predicted with a higher accuracy using community information extracted from the network topology, and the proposed framework outperforms several measures especially proposed for community-based link prediction. The paper is concluded with open research directions.


Entropy ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 254 ◽  
Author(s):  
Shaokai Wang ◽  
Xutao Li ◽  
Yunming Ye ◽  
Shanshan Feng ◽  
Raymond Lau ◽  
...  

Presently, many users are involved in multiple social networks. Identifying the same user in different networks, also known as anchor link prediction, becomes an important problem, which can serve numerous applications, e.g., cross-network recommendation, user profiling, etc. Previous studies mainly use hand-crafted structure features, which, if not carefully designed, may fail to reflect the intrinsic structure regularities. Moreover, most of the methods neglect the attribute information of social networks. In this paper, we propose a novel semi-supervised network-embedding model to address the problem. In the model, each node of the multiple networks is represented by a vector for anchor link prediction, which is learnt with awareness of observed anchor links as semi-supervised information, and topology structure and attributes as input. Experimental results on the real-world data sets demonstrate the superiority of the proposed model compared to state-of-the-art techniques.


Sign in / Sign up

Export Citation Format

Share Document