Evidence supporting beneficial effects of virgin olive oil compared to sunflower and fish oils from the point of view of aging and longevity

Author(s):  
Alberto Badillo-Carrasco ◽  
Victoria Jiménez-Trigo ◽  
José M. Romero-Márquez ◽  
Lorenzo Rivas-García ◽  
Alfonso Varela-López ◽  
...  

Diet plays a central role in aging and in the prevention of age-related diseases. Specifically, dietary lipids have influence on processes like oxidative stress or inflammation. This review summarizes and compares the effects of lifelong feeding on three different fat sources, namely virgin olive oil, sunflower oil or fish oil (which differ in fatty acid profile and minor components content) in the pancreas, liver, alveolar bone and femur of old rats. Also, effects on longevity and causes of death are summarized. Animals fed on virgin olive oil had a lower number of β cells and insulin content in the pancreas, less liver fibrosis, less loss of alveolar bone, and greater bone mass density in the femur. In general, the markers of oxidative damage at the liver, pancreatic, gingival and systemic levels were also lower in animals fed on virgin olive oil compared to those treated with sunflower or fish oil. Finally, although the animals died from similar causes regardless of the experimental group, virgin olive oil increased lifespan compared to sunflower oil. Therefore, it is evidenced the chance to modulate the effects of the physiological aging process by diet and, more specifically, by dietary fat.

PLoS ONE ◽  
2013 ◽  
Vol 8 (9) ◽  
pp. e74234 ◽  
Author(s):  
Pedro Bullon ◽  
Maurizio Battino ◽  
Alfonso Varela-Lopez ◽  
Patricia Perez-Lopez ◽  
Sergio Granados-Principal ◽  
...  

Nutrients ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2390 ◽  
Author(s):  
Navarro-Hortal ◽  
Ramírez-Tortosa ◽  
Varela-López ◽  
Romero-Márquez ◽  
Ochoa ◽  
...  

Diet plays a decisive role in heart physiology, with lipids having especial importance in pathology prevention and development. This study aimed to investigate how dietary lipids varying in lipid profile (virgin olive oil, sunflower oil or fish oil) affected the heart of rats during aging. Heart histopathology, mitochondrial morphometry, and oxidative status were assessed. Typical histopathological features associated with aging, such as valvular lesions, endomyocardical hyperplasia, or papillary muscle calcification, were found at a low extent in all the experimental groups. The most relevant finding was that inflammation registered by fish oil group was lower compared to the other treatments. At the ultrastructural level, heart mitochondrial area, perimeter, and aspect ratio were higher in fish oil-fed rats than in those fed on sunflower oil. Concerning oxidative stress markers, there were differences only in coenzyme Q levels and catalase activity, lower in sunflower oil-fed animals compared with those fed on fish oil. In summary, dietary intake for a long period on dietary fats with different fatty acids profile led to differences in some aspects associated with the aging process at the heart. Fish oil seems to be the fat most protective of heart during aging.


Author(s):  
César L Ramirez-Tortosa ◽  
Alfonso Varela-López ◽  
Maria D Navarro-Hortal ◽  
Francisco M Ramos-Pleguezuelos ◽  
Bélgica Márquez-Lobo ◽  
...  

2015 ◽  
Vol 16 (10) ◽  
pp. 23425-23445 ◽  
Author(s):  
Adrián González-Alonso ◽  
César Ramírez-Tortosa ◽  
Alfonso Varela-López ◽  
Enrique Roche ◽  
María Arribas ◽  
...  

Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2235
Author(s):  
Alyann Otrante ◽  
Amal Trigui ◽  
Roua Walha ◽  
Hicham Berrougui ◽  
Tamas Fulop ◽  
...  

High-density lipoproteins (HDL) maintain cholesterol homeostasis through the role they play in regulating reverse cholesterol transport (RCT), a process by which excess cholesterol is transported back to the liver for elimination. However, RCT can be altered in the presence of cardiovascular risk factors, such as aging, which contributes to the increase in the incidence of cardiovascular diseases (CVD). The present study was aimed at investigating the effect of extra virgin olive oil (EVOO) intake on the cholesterol efflux capacity (CEC) of HDL, and to elucidate on the mechanisms by which EVOO intake improves the anti-atherogenic activity of HDL. A total of 84 healthy women and men were enrolled and were distributed, according to age, into two groups: 27 young (31.81 ± 6.79 years) and 57 elderly (70.72 ± 5.6 years) subjects. The subjects in both groups were given 25 mL/d of extra virgin olive oil (EVOO) for 12 weeks. CEC was measured using J774 macrophages radiolabeled with tritiated cholesterol ((3H) cholesterol). HDL subclass distributions were analyzed using the Quantimetrix Lipoprint® system. The HDL from the elderly subjects exhibited a lower level of CEC, at 11.12% (p < 0.0001), than the HDL from the young subjects. The CEC of the elderly subjects returned to normal levels following 12 weeks of EVOO intake. An analysis of the distribution of HDL subclasses showed that HDL from the elderly subjects were composed of lower levels of large HDL (L-HDL) (p < 0.03) and higher levels of small HDL (S-HDL) (p < 0.002) compared to HDL from the young subjects. A multiple linear regression analysis revealed a positive correlation between CEC and L-HDL levels (r = 0.35 and p < 0.001) as well as an inverse correlation between CEC and S-HDL levels (r = −0.27 and p < 0.01). This correlation remained significant even when several variables, including age, sex, and BMI as well as low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and glucose levels (β = 0.28, p < 0.002, and β = 0.24, p = 0.01) were accounted for. Consuming EVOO for 12 weeks modulated the age-related difference in the distribution of HDL subclasses by reducing the level of S-HDL and increasing the level of intermediate-HDL/large-HDL (I-HDL/L-HDL) in the elderly subjects. The age-related alteration of the CEC of HDL was due, in part, to an alteration in the distribution of HDL subclasses. A diet enriched in EVOO improved the functionality of HDL through an increase in I-HDL/L-HDL and a decrease in S-HDL.


2015 ◽  
Vol 227 (3) ◽  
pp. 129-141 ◽  
Author(s):  
Russell T Turner ◽  
Michael Dube ◽  
Adam J Branscum ◽  
Carmen P Wong ◽  
Dawn A Olson ◽  
...  

Excessive weight gain in adults is associated with a variety of negative health outcomes. Unfortunately, dieting, exercise, and pharmacological interventions have had limited long-term success in weight control and can result in detrimental side effects, including accelerating age-related cancellous bone loss. We investigated the efficacy of using hypothalamic leptin gene therapy as an alternative method for reducing weight in skeletally-mature (9 months old) female rats and determined the impact of leptin-induced weight loss on bone mass, density, and microarchitecture, and serum biomarkers of bone turnover (CTx and osteocalcin). Rats were implanted with cannulae in the 3rd ventricle of the hypothalamus and injected with either recombinant adeno-associated virus encoding the gene for rat leptin (rAAV-Leptin,n=7) or a control vector encoding green fluorescent protein (rAAV-GFP,n=10) and sacrificed 18 weeks later. A baseline control group (n=7) was sacrificed at vector administration. rAAV-Leptin-treated rats lost weight (−4±2%) while rAAV-GFP-treated rats gained weight (14±2%) during the study. At study termination, rAAV-Leptin-treated rats weighed 17% less than rAAV-GFP-treated rats and had lower abdominal white adipose tissue weight (−80%), serum leptin (−77%), and serum IGF1 (−34%). Cancellous bone volume fraction in distal femur metaphysis and epiphysis, and in lumbar vertebra tended to be lower (P<0.1) in rAAV-GFP-treated rats (13.5 months old) compared to baseline control rats (9 months old). Significant differences in cancellous bone or biomarkers of bone turnover were not detected between rAAV-Leptin and rAAV-GFP rats. In summary, rAAV-Leptin-treated rats maintained a lower body weight compared to baseline and rAAV-GFP-treated rats with minimal effects on bone mass, density, microarchitecture, or biochemical markers of bone turnover.


1998 ◽  
Vol 42 (5) ◽  
pp. 251-260 ◽  
Author(s):  
Nathalie Nicolaïew ◽  
Nicole Lemort ◽  
Laura Adorni ◽  
Bruno Berra ◽  
Gigliola Montorfano ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Joan Jasien ◽  
Caitlin M. Daimon ◽  
Stuart Maudsley ◽  
Bruce K. Shapiro ◽  
Bronwen Martin

Low bone mass density (BMD), a classical age-related health issue and a known health concern for fair skinned, thin, postmenopausal Caucasian women, is found to be common among individuals with developmental/intellectual disabilities (D/IDs). It is the consensus that BMD is decreased in both men and women with D/ID. Maintaining good bone health is important for this population as fractures could potentially go undetected in nonverbal individuals, leading to increased morbidity and a further loss of independence. This paper provides a comprehensive overview of bone health of adults with D/ID, their risk of fractures, and how this compares to the general aging population. We will specifically focus on the bone health of two common developmental disabilities, Down syndrome (DS) and cerebral palsy (CP), and will discuss BMD and fracture rates in these complex populations. Gaining a greater understanding of how bone health is affected in individuals with D/ID could lead to better customized treatments for these specific populations.


Sign in / Sign up

Export Citation Format

Share Document