scholarly journals Transdifferentiation Meets Next-generation Biotechnologies

StemJournal ◽  
2022 ◽  
pp. 1-11
Author(s):  
Xiaoshan Ke ◽  
Abhimanyu Thakur ◽  
Huanhuan Joyce Chen

Transdifferentiation is the process of converting terminally differentiated cells to another cell type. Being less time-consuming and free from tumorigenesis, it is a promising alternative to directed differentiation, which provides cell sources for tissue regeneration therapy and disease modeling. In the past decades, transdifferentiation was found to happen within or across the cell lineages, being induced by overexpression of key transcription factors, chemical cocktail treatments, etc. Implementing next-generation biotechnologies, such as genome editing tools and scRNA-seq, improves current protocols and has the potential to facilitate discovery in new pathways of transdifferentiation, which will accelerate its application in clinical use.

Blood ◽  
2012 ◽  
Vol 119 (21) ◽  
pp. 4828-4837 ◽  
Author(s):  
Margaret H. Baron ◽  
Joan Isern ◽  
Stuart T. Fraser

Abstract Erythroid (red blood) cells are the first cell type to be specified in the postimplantation mammalian embryo and serve highly specialized, essential functions throughout gestation and postnatal life. The existence of 2 developmentally and morphologically distinct erythroid lineages, primitive (embryonic) and definitive (adult), was described for the mammalian embryo more than a century ago. Cells of the primitive erythroid lineage support the transition from rapidly growing embryo to fetus, whereas definitive erythrocytes function during the transition from fetal life to birth and continue to be crucial for a variety of normal physiologic processes. Over the past few years, it has become apparent that the ontogeny and maturation of these lineages are more complex than previously appreciated. In this review, we highlight some common and distinguishing features of the red blood cell lineages and summarize advances in our understanding of how these cells develop and differentiate throughout mammalian ontogeny.


2021 ◽  
Author(s):  
Connie L Jiang ◽  
Yogesh Goyal ◽  
Naveen Jain ◽  
Qiaohong Wang ◽  
Rachel E Truitt ◽  
...  

Cardiac directed differentiation of human induced pluripotent stem cells consistently produces a mixed population of cardiomyocytes and non-cardiac cell types even when using very well-characterized protocols. We wondered whether differentiated cell types might result from intrinsic differences in hiPS cells prior to the onset of differentiation. By associating individual differentiated cells that share a common hiPS cell precursor, we were able to test whether expression variability in differentiated cells was pre-determined from the hiPS cell state. Although within a single experiment, differentiated cells that share an hiPS cell progenitor were more transcriptionally similar to each other than to other cells in the differentiated population, when the same hiPS cells were differentiated in parallel, we did not observe high transcriptional similarity across differentiations. Additionally, we found that substantial cell death occurred during differentiation in a manner that suggested that all cells were equally likely to survive or die, suggesting that there was no intrinsic selection bias for cells descended from particular hiPS cell progenitors. These results led us to wonder about how cells grow out spatially during the directed differentiation process. Labeling cells by their expression of a few canonical cell type marker genes, we showed that cells expressing the same marker tended to occur in patches observable by visual inspection, suggesting that cell type determination across multiple cell types, once initiated, is maintained in a cell-autonomous manner for multiple divisions. Altogether, our results show that while there is substantial heterogeneity in the initial hiPS cell population, that heterogeneity is not responsible for heterogeneous outcomes, and that the window during which cell type specification occurs is likely to begin shortly after the seeding of hiPS cells for differentiation.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 620
Author(s):  
Hitomi Kaneko ◽  
Taku Kaitsuka ◽  
Kazuhito Tomizawa

Regenerative medicine and disease modeling are expanding rapidly, through the development of human-induced pluripotent stem cells (hiPSCs). Many exogeneous supplements are often used for the directed differentiation of hiPSCs to specific lineages, such as chemicals and hormones. Some of these are known to synchronize the circadian clock, like forskolin (Frk) and dexamethasone (Dex); however, the response to these stimulations has not been fully elucidated for hiPSCs. In this study, we examined the response of clock genes to synchronizing stimulation, and compared it with fully differentiated cells, U2OS, and fibroblasts. The expression of clock genes did not show circadian rhythms in hiPSCs with Frk and Dex, which could be due to the significantly low levels of BMAL1. On the other hand, a circadian-like rhythm of D-box binding protein (DBP) expression was observed in hiPSCs by culturing them in an environment with a simulated body temperature. However, the inhibition of temperature-inducible factors, which are involved in temperature rhythm-induced synchronization, could not repress the expression of such rhythms, while the inhibition of HIF-1α significantly repressed them. In summary, we suggest that clock genes do not respond to the synchronizing agents in hiPSCs; instead, a unique circadian-like rhythm is induced by the temperature rhythm.


Blood ◽  
2015 ◽  
Vol 125 (17) ◽  
pp. 2641-2648 ◽  
Author(s):  
Linda T. Vo ◽  
George Q. Daley

Abstract Generating human hematopoietic stem cells (HSCs) from autologous tissues, when coupled with genome editing technologies, is a promising approach for cellular transplantation therapy and for in vitro disease modeling, drug discovery, and toxicology studies. Human pluripotent stem cells (hPSCs) represent a potentially inexhaustible supply of autologous tissue; however, to date, directed differentiation from hPSCs has yielded hematopoietic cells that lack robust and sustained multilineage potential. Cellular reprogramming technologies represent an alternative platform for the de novo generation of HSCs via direct conversion from heterologous cell types. In this review, we discuss the latest advancements in HSC generation by directed differentiation from hPSCs or direct conversion from somatic cells, and highlight their applications in research and prospects for therapy.


2019 ◽  
Vol 14 (1) ◽  
pp. 3-8 ◽  
Author(s):  
Young-Dan Cho ◽  
Kyoung-Hwa Kim ◽  
Hyun-Mo Ryoo ◽  
Yong-Moo Lee ◽  
Young Ku ◽  
...  

Background: Periodontitis is an inflammatory disease that can result in destruction of the tooth attachment apparatus. Therefore, periodontal tissue regeneration is currently an important focus of research in the field. Approaches using stem cells and reprogrammed cells, such as induced pluripotent stem cells (iPSCs) or trans-differentiated cells, represent the cutting edge in periodontal regeneration, and have led to many trials for their clinical application. Objectives and Results: In this review, we consider all available stem cell sources, methods to obtain the cells, their capability to differentiate into the desired cells, and the extent of their utilization in periodontal regeneration. In addition, we introduce the new concepts of using iPSCs and transdifferentiated cells for periodontal regeneration. Finally, we discuss the promise of tissue engineering for improving cell therapy outcomes for periodontal regeneration. Conclusions: Despite their limitations, iPSCs and trans-differentiated cells may be promising cell sources for periodontal tissue regeneration. Further collaborative investigation is required for the effective and safe application of these cells in combination with tissue engineering elements, like scaffolds and biosignals.


2006 ◽  
Vol 290 (1) ◽  
pp. C1-C10 ◽  
Author(s):  
Beth A. Potter ◽  
Rebecca P. Hughey ◽  
Ora A. Weisz

The maintenance of proper epithelial function requires efficient sorting of newly synthesized and recycling proteins to the apical and basolateral surfaces of differentiated cells. Whereas basolateral protein sorting signals are generally confined to their cytoplasmic regions, apical targeting signals have been identified that localize to luminal, transmembrane, and cytoplasmic aspects of proteins. In the past few years, both N- and O-linked glycans have been identified as apical sorting determinants. Glycan structures are extraordinarily diverse and have tremendous information potential. Moreover, because the oligosaccharides added to a given protein can change depending on cell type and developmental stage, the potential exists for altering sorting pathways by modulation of the expression pattern of enzymes involved in glycan synthesis. In this review, we discuss the evidence for glycan-mediated apical sorting along the biosynthetic pathway and present possible mechanisms by which these common and heterogeneous posttranslational modifications might function as specific sorting signals.


Author(s):  
Rohan Aggarwal ◽  
Monika Targhotra ◽  
Bhumika Kumar ◽  
P.K Sahoo ◽  
Meenakshi K Chauhan

In the past few years gene delivery system has gained a huge attention owing to its proved efficacy in several diseases especially in those caused by genetic and/oroncological malfunctioning. The effective gene delivery mainly depends on the carrier molecules that can ensure the safe and specific delivery of the nucleic acidmolecules. Viral vectors have been used for a longer period as the gene transfer vehicle. However, these viral vectors have potential immunological disadvantages that made them less preferred. Recently, non-viral vectors such as polyplexes have emerged as a promising alternative for viral vectors. Polyplexes are formed by conjugating a polymer with DNA and in maximum cases the cationic polymers are preferred over others. The structure and stability of the polyplexes depends on various factors. The ability of the polymer to condense the DNA mainly dictates the efficiency of the polyplex mediated transfection. In this review we are going to provide a framework for the synthesis and design of the polyplexes along with the structure and stability of the complexes pertaining to mechanism of action, characterization and therapeutic application, including polyethyleneimine mediated cytotoxicity as well as newer strategies for the generation of better polyplexes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bei Liu ◽  
Shi Chen ◽  
Yaxing Xu ◽  
Yulin Lyu ◽  
Jinlin Wang ◽  
...  

AbstractExtended pluripotent stem (EPS) cells have shown great applicative potentials in generating synthetic embryos, directed differentiation and disease modeling. However, the lack of a xeno-free culture condition has significantly limited their applications. Here, we report a chemically defined and xeno-free culture system for culturing and deriving human EPS cells in vitro. Xeno-free human EPS cells can be long-term and genetically stably maintained in vitro, as well as preserve their embryonic and extraembryonic developmental potentials. Furthermore, the xeno-free culturing system also permits efficient derivation of human EPS cells from human fibroblast through reprogramming. Our study could have broad utility in future applications of human EPS cells in biomedicine.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Elerson Matos Rocha ◽  
Osvaldo Marinotti ◽  
Deidre Machado Serrão ◽  
Laura Viana Correa ◽  
Ricardo de Melo Katak ◽  
...  

Abstract Background Malaria remains a major public health problem in South America, mostly in the Amazon region. Among newly proposed ways of controlling malaria transmission to humans, paratransgenesis is a promising alternative. Paratransgenesis aims to inhibit the development of parasites within the vector through the action of genetically modified bacteria. The first step towards successful paratransgenesis in the Amazon is the identification of Anopheles darlingi symbiotic bacteria, which are transmitted vertically among mosquitoes, and are not pathogenic to humans. Methods Culturable bacteria associated with An. darlingi and their breeding sites were isolated by conventional microbiological techniques. Isolated strains were transformed with a GFP expressing plasmid, pSPT-1-GFP, and reintroduced in mosquitoes by feeding. Their survival and persistence in the next generation was assessed by the isolation of fluorescent bacteria from eggs, larvae, pupae and adult homogenates. Results A total of 179 bacterial strains were isolated from samples from two locations, Coari and Manaus. The predominant genera identified in this study were Acinetobacter, Enterobacter, Klebsiella, Serratia, Bacillus, Elizabethkingia, Stenotrophomonas and Pantoea. Two isolated strains, Serratia-Adu40 and Pantoea-Ovo3, were successfully transformed with the pSPT-1-GFP plasmid and expressed GFP. The fluorescent bacteria fed to adult females were transferred to their eggs, which persisted in larvae and throughout metamorphosis, and were detected in adult mosquitoes of the next generation. Conclusion Serratia-Adu40 and Pantoea-Ovo3 are promising candidates for paratransgenesis in An. darlingi. Further research is needed to determine if these bacteria are vertically transferred in nature.


2021 ◽  
pp. 2109198
Author(s):  
Yue Wang ◽  
Haitao Cui ◽  
Timothy Esworthy ◽  
Deqing Mei ◽  
Yancheng Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document