scholarly journals Originals of operating images for generalized problems of unsteady heat conductivity

Author(s):  
E. M. Kartashov

A series of operating (Laplace) non-standard images, the originals of which are absent in well-known reference books on operational calculus, are considered. By reducing one of the basic images to the Riemann-Mellin contour integral for the modified Bessel functions and analyzing the corresponding inversion formula using the approaches of the complex variable function theory, an analytical form of the original original is found, which is abrupt in nature with a break point. It is shown that analytical solutions of the corresponding mathematical models using the found originals have a wave character, which is expressed by the presence of the Heaviside step function in the solutions. The latter means that at any time there is a region of physical disturbance to the point of discontinuity and an unperturbed area after the point of discontinuity. The images studied are included in the operational solutions of mathematical models in many areas of applied mathematics. physics, thermomechanics, thermal physics, in particular in the theory of thermal shock of viscoelastic bodies, in the study of the thermal reaction of solids based on the classical Maxwell-Cattaneo-Lykov-Vernott phenomenology, taking into account the final rate of heat propagation. These models are needed to study the thermal reaction of relatively new consolidated structurally sensitive polymeric materials in structures exposed to high-intensity external influences. The analytical relations obtained for the originals and the original improper integrals resulting from them, containing combinations of Bessel functions, can be used in the general methodology of constructing and applying various mathematical models in a wide range of external influences on materials in many fields of science and technology.

2018 ◽  
Vol 245 ◽  
pp. 15002 ◽  
Author(s):  
Roman Davydov ◽  
Valery Antonov ◽  
Dmitry Molodtsov ◽  
Alexey Cheremisin ◽  
Vadim Korablev

The rapid spread of storm floods over large areas requires flood management throughout the river basin by the creation an innovative system of flood control facilities of various functional purposes distributed in the area. The central part of the system is the hydro system with hydro power plant. In addition, the flood control facilities on the side tributaries with self-regulating reservoir are included in the system. To assess the effect of controlling extreme water discharges by flood control facilities, it is necessary to develop special mathematical models reflecting the specifics of their operation. Unified mathematical models of the operation modes of a hydro complex with hydroelectric power station and flood control facility are created. They are implemented in a computer program that provides the ability to determine the main parameters and operating characteristics of hydro systems when performing multivariate calculations in a wide range of initial data. This makes possible specifying the parameters and operation modes of each hydro system with the current economic and environmental requirements, to assess the energy-economic and environmental consequences in the operation of the system of flood control facilities distributed in the area. The article analyses the results of the extreme water discharge’s regulation by the hydro system on the main river and flood control facilities on the side tributaries, considering environmental requirements.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3497
Author(s):  
Piotr Stachak ◽  
Izabela Łukaszewska ◽  
Edyta Hebda ◽  
Krzysztof Pielichowski

Polyurethanes (PUs) are a significant group of polymeric materials that, due to their outstanding mechanical, chemical, and physical properties, are used in a wide range of applications. Conventionally, PUs are obtained in polyaddition reactions between diisocyanates and polyols. Due to the toxicity of isocyanate raw materials and their synthesis method utilizing phosgene, new cleaner synthetic routes for polyurethanes without using isocyanates have attracted increasing attention in recent years. Among different attempts to replace the conventional process, polyaddition of cyclic carbonates (CCs) and polyfunctional amines seems to be the most promising way to obtain non-isocyanate polyurethanes (NIPUs) or, more precisely, polyhydroxyurethanes (PHUs), while primary and secondary –OH groups are being formed alongside urethane linkages. Such an approach eliminates hazardous chemical compounds from the synthesis and leads to the fabrication of polymeric materials with unique and tunable properties. The main advantages include better chemical, mechanical, and thermal resistance, and the process itself is invulnerable to moisture, which is an essential technological feature. NIPUs can be modified via copolymerization or used as matrices to fabricate polymer composites with different additives, similar to their conventional counterparts. Hence, non-isocyanate polyurethanes are a new class of environmentally friendly polymeric materials. Many papers on the matter above have been published, including both original research and extensive reviews. However, they do not provide collected information on NIPU composites fabrication and processing. Hence, this review describes the latest progress in non-isocyanate polyurethane synthesis, modification, and finally processing. While focusing primarily on the carbonate/amine route, methods of obtaining NIPU are described, and their properties are presented. Ways of incorporating various compounds into NIPU matrices are characterized by the role of PHU materials in copolymeric materials or as an additive. Finally, diverse processing methods of non-isocyanate polyurethanes are presented, including electrospinning or 3D printing.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Raed I. Bourisli ◽  
Adnan A. AlAnzi

This work aims at developing a closed-form correlation between key building design variables and its energy use. The results can be utilized during the initial design stages to assess the different building shapes and designs according to their expected energy use. Prototypical, 20-floor office buildings were used. The relative compactness, footprint area, projection factor, and window-to-wall ratio were changed and the resulting buildings performances were simulated. In total, 729 different office buildings were developed and simulated in order to provide the training cases for optimizing the correlation’s coefficients. Simulations were done using the VisualDOE TM software with a Typical Meteorological Year data file, Kuwait City, Kuwait. A real-coded genetic algorithm (GA) was used to optimize the coefficients of a proposed function that relates the energy use of a building to its four key parameters. The figure of merit was the difference in the ratio of the annual energy use of a building normalized by that of a reference building. The objective was to minimize the difference between the simulated results and the four-variable function trying to predict them. Results show that the real-coded GA was able to come up with a function that estimates the thermal performance of a proposed design with an accuracy of around 96%, based on the number of buildings tested. The goodness of fit, roughly represented by R2, ranged from 0.950 to 0.994. In terms of the effects of the various parameters, the area was found to have the smallest role among the design parameters. It was also found that the accuracy of the function suffers the most when high window-to-wall ratios are combined with low projection factors. In such cases, the energy use develops a potential optimum compactness. The proposed function (and methodology) will be a great tool for designers to inexpensively explore a wide range of alternatives and assess them in terms of their energy use efficiency. It will also be of great use to municipality officials and building codes authors.


Robotics ◽  
2013 ◽  
pp. 1212-1232 ◽  
Author(s):  
Rogério Sales Gonçalves ◽  
João Carlos Mendes Carvalho

The science of rehabilitation shows that repeated movements of human limbs can help the patient regain function in the injured limb. There are three types of mechanical systems used for movement rehabilitation: robots, cable-based manipulators, and exoskeletons. Industrial robots can be used because they provide a three-dimensional workspace with a wide range of flexibility to execute different trajectories, which are useful for motion rehabilitation. The cable-based manipulators consist of a movable platform and a base, which are connected by multiple cables that can extend or retract. The exoskeleton is fixed around the patient's limb to provide the physiotherapy movements. This chapter presents a summary of the principal human limb movements, a review of several mechanical systems used for rehabilitation, as well as common mathematical models of such systems.


Author(s):  
Софья Дмитриевна Сенотрусова ◽  
Ольга Фалалеевна Воропаева ◽  
Юрий Иванович Шокин

Работа посвящена практическому использованию минимальных математических моделей динамики сигнального пути p53 для описания достаточно широкого круга лабораторных экспериментов, в которых взаимодействие p53 и белковингибиторов p53 опосредуется микроРНК, образующими с p53 петлю положительной обратной связи. Представлены базовая модель, разработанные на ее основе новые минимальные модели, алгоритм численного решения прямых и обратных коэффициентных задач и результаты сопоставления полученных численных решений с экспериментальными данными о динамике уровней белков p53, p21, Bax, белков-ингибиторов Mdm2, Wip1, Sirt1 и различных микроРНК (miR-16, miR-34a, miR-192, miR-194, miR-215) в условиях стрессовых воздействий. С привлечением полученных математических моделей исследованы базовые механизмы функционирования сигнального пути p53 в условиях, приближенных к условиям конкретных лабораторных экспериментов in vitro и in vivo. Продемонстрированы синергический эффект гиперактивации сигнального пути p53, в котором задействованы микроРНК, и механизмы бимодального переключения. Показана ключевая роль p53-зависимых микроРНК в реализации некоторых гипотетических терапевтических стратегий, связанных с управлением механизмом активации апоптоза клеток. В рамках принятой базовой модели даны оценки вероятности рассогласования в диагностике дегенеративных заболеваний, основанной на анализе уровня p53зависимых микроРНК и p53, при слабой и умеренной дерегуляции микроРНК. This study addresses the practical use of minimal mathematical models of the dynamics of a hypothetical system of the p53 signaling pathway to describe a fairly wide range of laboratory experiments. In such system, the interaction of p53 and p53 inhibitor proteins is mediated by microRNAs that form a positive feedback loop with p53. A basic model, new minimal models developed on its basis, an algorithm for the numerical solution of direct and inverse coefficient problems, and the results of comparing the obtained numerical solutions with experimental data on the dynamics of the levels of p53, p21, Bax proteins, inhibitor proteins Mdm2, Wip1, Sirt1, and various microRNAs (miR-16, miR-34a, miR-192, miR-194, miR-215) under stress conditions are presented. In numerical experiments, the main mechanisms of the p53 signaling pathway were investigated. A synergistic effect of hyperactivation of the p53 signaling pathway and bimodal switching mechanisms has been demonstrated. We show the key role of p53-dependent microRNAs in the implementation of some hypothetical therapeutic strategies associated with the control mechanism for activation of cells apoptosis. Within the framework of the accepted basic model, we estimated the probability of mismatch in the diagnosis of the patient’s status. The status is based on the analysis of the level of p53-dependent microRNAs and p53, with weak and moderate deregulation of microRNAs.


Author(s):  
Ian L. Hosier ◽  
Alun S. Vaughan

Polymer science is, of course, driven by the desire to produce new materials for new applications. The success of materials such as polyethylene, polypropylene, and polystyrene is such that these materials are manufactured on a huge scale and are indeed ubiquitous. There is still a massive drive to understand these materials and improve their properties in order to meet material requirements; however, increasingly polymers are being applied to a wide range of problems, and certainly in terms of developing new materials there is much more emphasis on control. Such control can be control of molecular weight, for example, the production of polymers with a highly narrow molecular weight distribution by anionic polymerization. The control of polymer architecture extends from block copolymers to other novel architectures such as ladder polymers and dendrimers. Cyclic systems can also be prepared, usually these are lower molecular weight systems, although these also might be expected to be the natural consequence of step-growth polymerization at high conversion. Polymers are used in a wide range of applications, as coatings, as adhesives, as engineering and structural materials, for packaging, and for clothing to name a few. A key feature of the success and versatility of these materials is that it is possible to build in properties by careful design of the (largely) organic molecules from which the chains are built up. For example, rigid aromatic molecules can be used to make high-strength fibres, the most highprofile example of this being Kevlar®; rigid molecules of this type are often made by simple step-growth polymerization and offer particular synthetic challenges as outlined in Chapter 4. There is now an increasing demand for highly specialized materials for use in for example optical and electronic applications and polymers have been singled out as having particular potential in this regard. For example, there is considerable interest in the development of polymers with targeted optical properties such as second-order optical nonlinearity, and in conducting polymers as electrode materials, as a route towards supercapacitors and as electroluminescent materials. Polymeric materials can also be used as an electrolyte in the design of compact batteries.


Author(s):  
Alain Goriely

Models are central to the world of applied mathematics. In its simplest sense, a model is an abstract representation of a system developed in order to answer specific questions or gain insight into a phenomenon. In general, we expect a model to be based on sound principles, to be mathematically consistent, and to have some predictive or insight value. Models are the ultimate form of quantification since all variables and parameters that appear must be properly defined and quantified for the equations to make sense. ‘Do you believe in models? Simplicity and complexity’ discusses the complexity of models; the steps involved in developing mathematical models—the physics paradigm; and collaborative mathematical modelling.


2000 ◽  
Vol 32 (4) ◽  
pp. 1190-1192
Author(s):  
Dominique Jeulin

The scientific community is saddened to learn of the death of Professor Georges Matheron on 7 August 2000. As a major figure in applied mathematics over four decades, he leaves an outstanding scientific heritage, covering a wide range of domains where probabilistic tools and models are implemented. He also trained more than one generation of researchers, engineers and teachers. In the fields of theoretical and applied random media and image analysis his work has inspired many researchers worldwide: mathematicians, statisticians, physicists, experimentalists, earth scientists, mining engineers and also users of image analysis and synthesis in all its applications (materials, biology, artificial vision, CAD, remote sensing, geophysics, biometry, image coding etc.).


Membranes ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 98 ◽  
Author(s):  
Niki Vergadou ◽  
Doros N. Theodorou

With a wide range of applications, from energy and environmental engineering, such as in gas separations and water purification, to biomedical engineering and packaging, glassy polymeric materials remain in the core of novel membrane and state-of the art barrier technologies. This review focuses on molecular simulation methodologies implemented for the study of sorption and diffusion of small molecules in dense glassy polymeric systems. Basic concepts are introduced and systematic methods for the generation of realistic polymer configurations are briefly presented. Challenges related to the long length and time scale phenomena that govern the permeation process in the glassy polymer matrix are described and molecular simulation approaches developed to address the multiscale problem at hand are discussed.


2018 ◽  
Vol 9 ◽  
pp. 2040-2048 ◽  
Author(s):  
Mykola Borzenkov ◽  
Maria Moros ◽  
Claudia Tortiglione ◽  
Serena Bertoldi ◽  
Nicola Contessi ◽  
...  

The unique photothermal properties of non-spherical gold nanoparticles under near-infrared (NIR) irradiation find broad application in nanotechnology and nanomedicine. The combination of their plasmonic features with widely used biocompatible poly(vinyl alcohol) (PVA) films can lead to novel hybrid polymeric materials with tunable photothermal properties and a wide range of applications. In this study, thin PVA films containing highly photothermally efficient gold nanostars (GNSs) were fabricated and their properties were studied. The resulting films displayed good mechanical properties and a pronounced photothermal effect under NIR irradiation. The local photothermal effect triggered by NIR irradiation of the PVA-GNS films is highly efficient at killing bacteria, therefore providing an opportunity to develop new types of protective antibacterial films and coatings.


Sign in / Sign up

Export Citation Format

Share Document