Ultralow Noise Low Offset Chopper Amplifier for Induction Coil Sensor to Detect Geomagnetic Field of 1 mHz to 1 kHz

2020 ◽  
Vol 25 (4) ◽  
pp. 497-511
Author(s):  
Jiawei Li ◽  
Zhenzhu Xi ◽  
Xingpeng Chen ◽  
He Wang ◽  
Xia Long ◽  
...  

An induction coil sensor (ICS) is important for measuring low-frequency (DC-1kHz) geomagnetic field. The accuracy of the preamplifier is one key factor determining the performance of the sensor. But the preamplifier is susceptible to 1/ f noise, offset voltage and drift. In order to eliminate these influences, a preamplifier circuit with three amplifier stages based on chopper technology has been designed, and its performance has been tested. The results show that: 1) The 1/ f noise corner frequency is 3 mHz, the equivalent input voltage noise (EIVN) level of the circuit is [Formula: see text] and [Formula: see text]; 2) The equivalent input current noise (EICN) level of the circuit is [Formula: see text]; 3) The offset voltage is about 600 nV, and the time drift performance is excellent. In conclusion, the preamplifier circuit has characteristics of ultralow noise, low offset voltage and low time drift. It can effectively amplify low-frequency weak geomagnetic signals from 1 mHz to 1 kHz and provides excellent performance for low-frequency ICS.

2021 ◽  
Author(s):  
Ara Abdulsatar Assim Assim ◽  
Evgenii Balashov

The given work is devoted to designing and implementing different dynamic offset cancellation techniques for 50 nm technology CMOS operational amplifiers. The goal is to minimize or get rid of the effects of the offset voltage. Offset voltage exists in all differential amplifiers due to the fact that no pair of transistors can be fabricated with the same size, there is always a slight difference in their dimensions (length or width), this gives rise to an undesirable effect called offset, the value of offset voltage for cheap commercial amplifiers are in the range of 1 to 10 mV, de-spite the fact that this isn’t a significant value, due to the high gain of such amplifiers, this voltage is amplified by tens or hundreds of times, this results in clipping of the output signal and this further limits the amplifier’s maximum allowable input voltage within the given dynamic range, hence its of great importance to take this small voltage into consideration, low-offset amplifiers find applications in mixers, analog to digital converters, instrumentation devices, etc. In this thesis, by using two different techniques for removing offset voltage (chopping and auto-zeroing), five low offset operational amplifiers were designed. The implemented methods reduced the flicker noise by more than 457 times (from 9.4 nV/√Hz to 20 pV/√Hz) at 1 Hz. All the simulations were done using Cadence Virtuoso.


2021 ◽  
Author(s):  
Ara Abdulsatar Assim Assim ◽  
Evgenii Balashov

The given work is devoted to designing and implementing different dynamic offset cancellation techniques for 50 nm technology CMOS operational amplifiers. The goal is to minimize or get rid of the effects of the offset voltage. Offset voltage exists in all differential amplifiers due to the fact that no pair of transistors can be fabricated with the same size, there is always a slight difference in their dimensions (length or width), this gives rise to an undesirable effect called offset, the value of offset voltage for cheap commercial amplifiers are in the range of 1 to 10 mV, de-spite the fact that this isn’t a significant value, due to the high gain of such amplifiers, this voltage is amplified by tens or hundreds of times, this results in clipping of the output signal and this further limits the amplifier’s maximum allowable input voltage within the given dynamic range, hence its of great importance to take this small voltage into consideration, low-offset amplifiers find applications in mixers, analog to digital converters, instrumentation devices, etc. In this thesis, by using two different techniques for removing offset voltage (chopping and auto-zeroing), five low offset operational amplifiers were designed. The implemented methods reduced the flicker noise by more than 457 times (from 9.4 nV/√Hz to 20 pV/√Hz) at 1 Hz. All the simulations were done using Cadence Virtuoso.


1999 ◽  
Vol 104 (A1) ◽  
pp. 305-310 ◽  
Author(s):  
S. Lepidi ◽  
P. Francia ◽  
U. Villante ◽  
L. J. Lanzerotti ◽  
A. Meloni

1983 ◽  
Vol 73 (6A) ◽  
pp. 1499-1511
Author(s):  
Paul Silver

Abstract A method is proposed for retrieving source-extent parameters from far-field body-wave data. At low frequency, the normalized P- or S-wave displacement amplitude spectrum can be approximated by |Ω^(r^,ω)| = 1 − τ2(r^)ω2/2 where r^ specifies a point on the focal sphere. For planar dislocation sources, τ2(r^) is linearly related to statistical measures of source dimension, source duration, and directivity. τ2(r^) can be measured as the curvature of |Ω^(r^,ω)| at ω = 0 or the variance of the pulse Ω^(r^,t). The quantity ωc=2τ−1(r^) is contrasted with the traditional corner frequency ω0, defined as the frequency at the intersection of the low- and high-frequency trends of |Ω^(r^,ω)|. For dislocation models without directivity, ωc(P) ≧ ωc(S) for any r^. A mean corner frequency defined by averaging τ2(r^) over the focal sphere, ω¯c=2<τ2(r^)>−1/2, satisfies ωc(P) > ωc(S) for any dislocation source. This behavior is not shared by ω0. It is shown that ω0 is most sensitive to critical times in the rupture history of the source, whereas ωc is determined by the basic parameters of source extent. Evidence is presented that ωc is the corner frequency measured on actual seismograms. Thus, the commonly observed corner frequency shift (P-wave corner greater than the S-wave corner), now viewed as a shift in ωc is simply a result of spatial finiteness and is expected to be a property of any dislocation source. As a result, the shift cannot be used as a criterion for rejecting particular dislocation models.


2012 ◽  
Vol 1 (2) ◽  
pp. 85-101 ◽  
Author(s):  
E. Kozlovskaya ◽  
A. Kozlovsky

Abstract. Seismic broadband sensors with electromagnetic feedback are sensitive to variations of surrounding magnetic field, including variations of geomagnetic field. Usually, the influence of the geomagnetic field on recordings of such seismometers is ignored. It might be justified for seismic observations at middle and low latitudes. The problem is of high importance, however, for observations in Polar Regions (above 60° geomagnetic latitude), where magnitudes of natural magnetic disturbances may be two or even three orders larger. In our study we investigate the effect of ultra-low frequency (ULF) magnetic disturbances, known as geomagnetic pulsations, on the STS-2 seismic broadband sensors. The pulsations have their sources and, respectively, maximal amplitudes in the region of the auroral ovals, which surround the magnetic poles in both hemispheres at geomagnetic latitude (GMLAT) between 60° and 80°. To investigate sensitivity of the STS-2 seismometer to geomagnetic pulsations, we compared the recordings of permanent seismic stations in northern Finland to the data of the magnetometers of the IMAGE network located in the same area. Our results show that temporary variations of magnetic field with periods of 40–150 s corresponding to regular Pc4 and irregular Pi2 pulsations are seen very well in recordings of the STS-2 seismometers. Therefore, these pulsations may create a serious problem for interpretation of seismic observations in the vicinity of the auroral oval. Moreover, the shape of Pi2 magnetic disturbances and their periods resemble the waveforms of glacial seismic events reported originally by Ekström (2003). The problem may be treated, however, if combined analysis of recordings of co-located seismic and magnetic instruments is used.


2021 ◽  
Vol 331 ◽  
pp. 07012
Author(s):  
Cipta Ramadhani ◽  
Bulkis Kanata ◽  
Abdullah Zainuddin ◽  
Rosmaliati ◽  
Teti Zubaidah

In this study, we performed research on electromagnetic anomalies related to earthquakes as early signs (precursors) that occurred in Fukushima, Japan on February 13th, 2021. The research focused on the utilization of geomagnetic field data which was derived from the Kakioka (KAK), Kanoya (KNY), and Memambetsu (MMB) observatories, particularly in the ultra-low frequency (ULF) to detect earthquake precursors. The method of electromagnetic data processing was conducted by applying a polarization ratio. In addition, we improved the methodology by splitting the ULF data (which ranged from 0.01-0.1 Hz) into 9 central frequencies and picking up the highest value from each central frequency to get the polarization ratio. The anomaly of magnetic polarization was identified 2-3 weeks before the mainshock in a narrowband frequency in the range of 0.04-0.05 Hz.


2011 ◽  
Vol 495 ◽  
pp. 201-204
Author(s):  
Polykseni Vourna

When a soft ferromagnetic material is flown by an ac current and a magnetic field is applied at the same time, a major change of its impedance is occurred. The aim of this paper is to investigate the influence of low frequency (1KHz-12KHz) ac current and the applied magnetic field on an amorphous magnetic wire (Co68Fe4.35Si12.5B15) without glass coating. For this purpose an experimental configuration has been setup, based on a Wheatstone bridge which receives an ac input signal from a frequency generator. The output is connected to the amorphous wire wrapped with a coil supplied by a dc voltage for the generation of the magnetic field. The output voltage pulse is measured for two cases a) The value of ac frequency is changing while the value of dc voltage applied to the coil remains constant (the magnetic field remains unchanged) and b) the magnetic field is changing while the ac frequency remains constant to a predefined value. Experimental results of the first scenario showed that when the frequency is altered a non-linear increase of the ac signal is observed at the output which shows an increase of the GMI effect and is related to the non-linearity of the wire’s permeability. For the second scenario the results showed an increase of the output signal offset (voltage) which also indicates an increase of the GMI effect.


2021 ◽  
Author(s):  
Takuro Toda ◽  
Mikako Ito ◽  
Jun-ichi Takeda ◽  
Alkio Masuda ◽  
Nobutaka Hattori ◽  
...  

Abstract Humans are frequently exposed to time-varying and static weak magnetic fields (WMF). However, the effects of faint magnetic fields, weaker than the geomagnetic field, have not been reported. We found that extremely low-frequency (ELF)-WMF, comprised of serial pulses of 10 µT intensity at 1–8 Hz, which was three or more times weaker than the geomagnetic field, reduced mitochondrial mass to 70% and the mitochondrial electron transport chain (ETC) complex II activity to 88%. Chemical inhibition of electron flux through the mitochondrial ETC complex II nullified the effect of ELF-WMF. Suppression of ETC complex II subsequently induced mitophagy by translocating parkin and PINK1 to the mitochondria and by recruiting LC3-II. Thereafter, mitophagy induced PGC-1α-mediated mitochondrial biogenesis to rejuvenate mitochondria. The lack of PINK1 negated the effect of ELF-WMF. Thus, ELF-WMF may be applicable for the treatment of human diseases that exhibit compromised mitochondrial homeostasis, such as Parkinson’s disease.


Sign in / Sign up

Export Citation Format

Share Document