scholarly journals Cascade stress-strength system Reliability Estimation of Inverse Rayleigh Distribution

2020 ◽  
Vol 3 (2) ◽  
pp. 9-19
Author(s):  
Hassna H. Kadem ◽  
Nada S. Karam

The electronic devices, equipment and complex machines used in many fields such as telecommunications, medicine, astronautics and others are all subject to malfunctions, which cause material and moral losses, waste of time and other damages. Hence the importance of reliability issue in our working life by evaluating the performance and efficiency of these systems and Measuring the reliability of any device will be the basis for the development of most of these devices . Then In this paper will  discussed the Estimation of Reliability Rn for cascade system when the stress and strength are Inverse Rayleigh distributed random variables. under-voltage rating. The cascade system is a redundant component system, which is a redundant component with under-voltage rating and independently distributed power, in which the redundant component replaces the faulty component.. Cascade system is a special case of Stress- Strength models system. Also we discussed the Estimation of Marginal Reliabilities R1, R2 and R3 for Cascade system by three estimation methods (Max. likelihood, Weighted Least Square, Least Square) and Compare between the estimators  of  R4. © 2018 JASET, International Scholars and Researchers Association

Author(s):  
A. S. Ogunsanya ◽  
E. E. E. Akarawak ◽  
W. B. Yahya

In this paper, we compared different Parameter Estimation method of the two parameter Weibull-Rayleigh Distribution (W-RD) namely; Maximum Likelihood Estimation (MLE), Least Square Estimation method (LSE) and three methods of Quartile Estimators. Two of the quartile methods have been applied in literature, while the third method (Q1-M) is introduced in this work. The methods have been applied to simulate data. These methods of estimation were compared using Error, Mean Square Error and Total Deviation (TD) which is also known as Sum Absolute Error Estimate (SAEE). The analytical results show that the performances of all the parameter estimation methods were satisfactory with data set of Weibull-Rayleigh distribution while degree of accuracy is determined by the sample size. The proposed quartile (Q1-M) method has the least Total Deviation and MSE. In addition, the quartile methods perform better than MLE for the simulated data. In particular, the proposed quartile methods (Q1-M) have an added advantage of simplicity in usage than MLE methods.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mayank Kumar Jha ◽  
Yogesh Mani Tripathi ◽  
Sanku Dey

PurposeThe purpose of this article is to derive inference for multicomponent reliability where stress-strength variables follow unit generalized Rayleigh (GR) distributions with common scale parameter.Design/methodology/approachThe authors derive inference for the unknown parametric function using classical and Bayesian approaches. In sequel, (weighted) least square (LS) and maximum product of spacing methods are used to estimate the reliability. Bootstrapping is also considered for this purpose. Bayesian inference is derived under gamma prior distributions. In consequence credible intervals are constructed. For the known common scale, unbiased estimator is obtained and is compared with the corresponding exact Bayes estimate.FindingsDifferent point and interval estimators of the reliability are examined using Monte Carlo simulations for different sample sizes. In summary, the authors observe that Bayes estimators obtained using gamma prior distributions perform well compared to the other studied estimators. The average length (AL) of highest posterior density (HPD) interval remains shorter than other proposed intervals. Further coverage probabilities of all the intervals are reasonably satisfactory. A data analysis is also presented in support of studied estimation methods. It is noted that proposed methods work good for the considered estimation problem.Originality/valueIn the literature various probability distributions which are often analyzed in life test studies are mostly unbounded in nature, that is, their support of positive probabilities lie in infinite interval. This class of distributions includes generalized exponential, Burr family, gamma, lognormal and Weibull models, among others. In many situations the authors need to analyze data which lie in bounded interval like average height of individual, survival time from a disease, income per-capita etc. Thus use of probability models with support on finite intervals becomes inevitable. The authors have investigated stress-strength reliability based on unit GR distribution. Useful comments are obtained based on the numerical study.


2020 ◽  
Vol 33 (4) ◽  
pp. 50
Author(s):  
Eman A.A. ◽  
Abbas N .S.

       A reliability system of the multi-component stress-strength model R(s,k) will be considered in the present paper ,when the stress and strength are independent and non-identically distribution have the Exponentiated Family Distribution(FED) with the unknown  shape parameter α and known scale parameter λ  equal to two and parameter θ equal to three. Different estimation methods of R(s,k) were introduced corresponding to Maximum likelihood and Shrinkage estimators. Comparisons among the suggested estimators were prepared depending on simulation established on mean squared error (MSE) criteria.


2021 ◽  
pp. 109442812199908
Author(s):  
Yin Lin

Forced-choice (FC) assessments of noncognitive psychological constructs (e.g., personality, behavioral tendencies) are popular in high-stakes organizational testing scenarios (e.g., informing hiring decisions) due to their enhanced resistance against response distortions (e.g., faking good, impression management). The measurement precisions of FC assessment scores used to inform personnel decisions are of paramount importance in practice. Different types of reliability estimates are reported for FC assessment scores in current publications, while consensus on best practices appears to be lacking. In order to provide understanding and structure around the reporting of FC reliability, this study systematically examined different types of reliability estimation methods for Thurstonian IRT-based FC assessment scores: their theoretical differences were discussed, and their numerical differences were illustrated through a series of simulations and empirical studies. In doing so, this study provides a practical guide for appraising different reliability estimation methods for IRT-based FC assessment scores.


2013 ◽  
Vol 278-280 ◽  
pp. 1323-1326
Author(s):  
Yan Hua Yu ◽  
Li Xia Song ◽  
Kun Lun Zhang

Fuzzy linear regression has been extensively studied since its inception symbolized by the work of Tanaka et al. in 1982. As one of the main estimation methods, fuzzy least squares approach is appealing because it corresponds, to some extent, to the well known statistical regression analysis. In this article, a restricted least squares method is proposed to fit fuzzy linear models with crisp inputs and symmetric fuzzy output. The paper puts forward a kind of fuzzy linear regression model based on structured element, This model has precise input data and fuzzy output data, Gives the regression coefficient and the fuzzy degree function determination method by using the least square method, studies the imitation degree question between the observed value and the forecast value.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5345
Author(s):  
Zhiqiang Jiang ◽  
Peibing Song ◽  
Xiang Liao

In order to analyze the year-end water level of multi-year regulating reservoir of the cascade hydropower system, this paper studied the joint operation optimization model of cascade reservoirs and its solving method based on multi-dimensional dynamic programming, and analyzed the power generation impact factors of cascade system that contains multi-year regulating reservoir. In particular, taking the seven reservoirs in the middle and lower reaches of Yalong River as an example, the optimal year-end water levels of multi-year regulating reservoir under the multi-year average situation and different inflow frequencies situation were studied. Based on the optimal calculation results of multi-dimensional dynamic programming, the inflow frequency difference considered operation rule of year-end water level of Lianghekou reservoir was extracted using the least square principle. The simulation results showed that, compared with the fixed year-end water level in multi-year, the extracted rule can improve the cascade power generation by more than 400 million kWh in an average year, representing an increase of 0.4%. This result means that the extracted rule can give full play to the regulation performance of multi-year regulating reservoir and improve the conversion efficiency of hydropower resources in cascade system. This is of great significance to the practical operation of cascade reservoirs system that contains multi-year regulating reservoir.


2018 ◽  
Vol 8 (1) ◽  
pp. 44
Author(s):  
Lutfiah Ismail Al turk

In this paper, a Nonhomogeneous Poisson Process (NHPP) reliability model based on the two-parameter Log-Logistic (LL) distribution is considered. The essential model’s characteristics are derived and represented graphically. The parameters of the model are estimated by the Maximum Likelihood (ML) and Non-linear Least Square (NLS) estimation methods for the case of time domain data. An application to show the flexibility of the considered model are conducted based on five real data sets and using three evaluation criteria. We hope this model will help as an alternative model to other useful reliability models for describing real data in reliability engineering area.


In this paper, we have defined a new two-parameter new Lindley half Cauchy (NLHC) distribution using Lindley-G family of distribution which accommodates increasing, decreasing and a variety of monotone failure rates. The statistical properties of the proposed distribution such as probability density function, cumulative distribution function, quantile, the measure of skewness and kurtosis are presented. We have briefly described the three well-known estimation methods namely maximum likelihood estimators (MLE), least-square (LSE) and Cramer-Von-Mises (CVM) methods. All the computations are performed in R software. By using the maximum likelihood method, we have constructed the asymptotic confidence interval for the model parameters. We verify empirically the potentiality of the new distribution in modeling a real data set.


2019 ◽  
Vol 5 (3) ◽  
pp. 6 ◽  
Author(s):  
Neha Dubey ◽  
Ankit Pandit

In wireless communication, orthogonal frequency division multiplexing (OFDM) plays a major role because of its high transmission rate. Channel estimation and tracking have many different techniques available in OFDM systems. Among them, the most important techniques are least square (LS) and minimum mean square error (MMSE). In least square channel estimation method, the process is simple but the major drawback is it has very high mean square error. Whereas, the performance of MMSE is superior to LS in low SNR, its main problem is it has high computational complexity. If the error is reduced to a very low value, then an exact signal will be received. In this paper an extensive review on different channel estimation methods used in MIMO-OFDM like pilot based, least square (LS) and minimum mean square error method (MMSE) and least minimum mean square error (LMMSE) methods and also other channel estimation methods used in MIMO-OFDM are discussed.


Sign in / Sign up

Export Citation Format

Share Document