scholarly journals Florida Homeowner Herbicide Guide: Considerations, Applications, and Selection

EDIS ◽  
2019 ◽  
Vol 2019 (4) ◽  
pp. 9
Author(s):  
Chris Marble

While some people opt for professional lawn maintenance companies, some homeowners may wish to perform their own landscape pest control in order to save money, to have more control of what is applied, or simply because they enjoy it. This EDIS publication is for Florida gardeners, horticulturalists and homeowners who want to utilize herbicides to control weeds in their landscape. This publication discusses common herbicides available at retail stores and how homeowners can use these them safely and effectively.https://edis.ifas.ufl.edu/ep575 This publication provides information and general management recommendations for a variety of common weed species found throughout Florida. For a species-specific weed identification guide or information on weed control in turfgrass, visit the EDIS Weed Control directory.

2009 ◽  
Vol 23 (3) ◽  
pp. 346-355 ◽  
Author(s):  
Christie L. Stewart ◽  
Robert E. Nurse ◽  
Peter H. Sikkema

Field trials were conducted from 2005 to 2007 at two locations in southwestern Ontario to investigate how weed control in corn was affected by the time of day that herbicides were applied. Weed control following the application of six POST herbicides (atrazine, bromoxynil, dicamba/diflufenzopyr, glyphosate, glufosinate, and nicosulfuron) at 06:00, 09:00, 12:00, 15:00, 18:00, 21:00, and 24:00 h was assessed. For many weed species herbicide efficacy was reduced when applications were made at 06:00, 21:00, and 24:00 h. Velvetleaf was the most sensitive to the time of day effect, followed by common ragweed, common lambsquarters, and redroot pigweed. Annual grasses were not as sensitive to application timing; however, control of barnyardgrass and green foxtail was reduced in some environments at 06:00 h and after 21:00 h. Only in the most severe cases was the grain yield of corn reduced due to decreased weed control. Daily changes in air temperature, relative humidity, and light intensity that cause species-specific physiological changes may account for the variation in weed control throughout the day. The results of this research suggest that there is a strong species-specific influence of ambient air temperature, light intensity, and leaf orientation on the efficacy of POST herbicides. These results should aid growers in applying herbicides when they are most efficacious, thus reducing costs associated with reduced efficacy.


2011 ◽  
Vol 29 (2) ◽  
pp. 351-362 ◽  
Author(s):  
A. Monteiro ◽  
I. Henriques ◽  
I. Moreira

The effects of different weed management periods on potatoes were studied in three areas (Bailundo, Chianga and Calenga) of the central highlands of Angola and in three cropping seasons, from June 2005 to May 2007. Six weed-management treatments were used to identify critical periods of competition and to allow the development of more precise management recommendations. Total potato yield ranged from about 22 t ha-1 in weed-free plots to about 3 t ha-1 with no weed control a yield loss of 86%. Major weed species Galinsoga parviflora, Cyperus esculentus, Bidens biternata, Amaranthus hybridus, Nicandra physaloides, Portulaca oleracea and Datura stramonium differed from area to area. The species G. parviflora dominated the weed flora in all three areas 73, 97 and 72 plants m² 50 days after crop emergence in Bailundo, Chianga and Calenga respectively, in dry season trials; while C. esculentus was also present in Chianga and Calenga, with an average density of ca 30 plants m-2 in dry season trials. Gompertz and logistic equations were fitted to data representing increasing periods of weed-free growth and weed interference, respectively. Critical periods for weed control, with a 95% weed-free total yield, were estimated from 26 to 66 and from 20 to 61 days after emergence for the rainy and dry seasons, respectively. Weed competition before or after these critical periods had negligible effects on crop yield.


2020 ◽  
Vol 57 (3) ◽  
pp. 199-210
Author(s):  
Rajib Kundu ◽  
Mousumi Mondal ◽  
Sourav Garai ◽  
Ramyajit Mondal ◽  
Ratneswar Poddar

Field experiments were conducted at research farm of Bidhan Chandra Krishi Viswavidyalaya, Kalyani, West Bengal, India (22°97' N latitude and 88°44' E longitude, 9.75 m above mean sea level) under natural weed infestations in boro season rice (nursery bed as well as main field) during 2017-18 and 2018-19 to evaluate the herbicidal effects on weed floras, yield, non-target soil organisms to optimize the herbicide use for sustainable rice-production. Seven weed control treatments including three doses of bispyribac-sodium 10% SC (150,200, and 250 ml ha-1), two doses of fenoxaprop-p-ethyl 9.3% EC (500 and 625 ml ha-1), one weed free and weedy check were laid out in a randomized complete block design, replicated thrice. Among the tested herbicides, bispyribac-sodium with its highest dose (250 ml ha-1) resulted in maximum weed control efficiency, treatment efficiency index and crop resistance index irrespective of weed species and dates of observation in both nursery as well as main field. Similar treatment also revealed maximum grain yield (5.20 t ha-1), which was 38.38% higher than control, closely followed by Fenoxaprop-p-ethyl (625 ml ha-1) had high efficacy against grasses, sedge and broadleaf weed flora. Maximum net return (Rs. 48765 ha-1) and benefit cost ratio (1.72) were obtained from the treatment which received bispyribac-sodium @ 250 ml ha-1. Based on overall performance, the bispyribac-sodium (250 ml ha-1) may be considered as the best herbicide treatment for weed management in transplanted rice as well as nursery bed.


2018 ◽  
Vol 18 (9) ◽  
pp. 847-856 ◽  
Author(s):  
Fulvio Massaro ◽  
Matteo Molica ◽  
Massimo Breccia

Ponatinib is a third generation kinase inhibitor designed to overcome the gatekeeper T315I mutation. In different trials this drug showed inhibitory activity against native BCR-ABL1 kinase and several ABL1 mutations. For this reason, ponatinib is currently indicated for the treatment of chronic myeloid leukaemia (CML) in every phase of disease resistant and/or intolerant to dasatinib and nilotinib and for whom imatinib is not indicated anymore or for patients with T315I mutation. The drug is also indicated for Ph+ acute lymphoblastic leukaemia (ALL). Ponatinib was temporarily suspended in 2013 for the occurrence of cardiovascular thrombotic events. Since then, different investigators analyzed baseline characteristics of patient candidates for ponatinib, especially cardiovascular profile, in order to describe general management recommendations in this setting. In this review, clinical trials data about the use of ponatinib in CML and Ph+ ALL patients will be discussed. It will be focused also about the safety and tolerability profile of the drug and future perspectives of employment.


Weed Science ◽  
2020 ◽  
pp. 1-23
Author(s):  
Tao Li ◽  
Jiequn Fan ◽  
Zhenguan Qian ◽  
Guohui Yuan ◽  
Dandan Meng ◽  
...  

Abstract The use of a corn-earthworm coculture (CE) system is an eco-agricultural technology that has been gradually extended due to its high economic output and diverse ecological benefits for urban agriculture in China. However, the effect of CE on weed occurrence has received little attention. A five-year successive experiment (2015 to 2019) was conducted to compare weed occurrence in CE and a corn (Zea mays L.) monoculture (CM). The results show that CE significantly decreased weed diversity, the dominance index, total weed density and biomass, but increased the weed evenness index. The five-year mean number of weed species per plot was 8.4 in CE and 10.7 in CM. Compared to those in CM, the five-year mean density and biomass of total weeds in CE decreased by 59.2% and 66.6%, respectively. The effect of CE on weed occurrence was species specific. The mean density of large crabgrass [Digitaria sanguinalis (L.) Scop.], green foxtail [Setaria viridis (L.) Beauv.], goosegrass [Eleusine indica (L.) Gaertn.], and common purslane (Portulaca oleracea L.) in CE decreased by 94.5, 78.1, 75.0, and 45.8%, whereas the mean biomass decreased by 96.2, 80.8, 76.9, and 41.4%, respectively. Our study suggests that the use of CE could suppress weed occurrence and reduce herbicide inputs in agriculture.


2021 ◽  
pp. 1-28
Author(s):  
Nicholas T. Basinger ◽  
Nicholas S. Hill

Abstract With the increasing focus on herbicide-resistant weeds and the lack of introduction of new modes of action, many producers have turned to annual cover crops as a tool for reducing weed populations. Recent studies have suggested that perennial cover crops such as white clover could be used as living mulch. However, white clover is slow to establish and is susceptible to competition from winter weeds. Therefore, the objective of this study was to determine clover tolerance and weed control in established stands of white clover to several herbicides. Studies were conducted in the fall and winter of 2018 to 2019 and 2019 to 2020 at the J. Phil Campbell Research and Education Center in Watkinsville, GA, and the Southeast Georgia Research and Education Center in Midville, GA. POST applications of imazethapyr, bentazon, or flumetsulam at low and high rates, or in combination with 2,4-D and 2,4-DB, were applied when clover reached 2 to 3 trifoliate stage. Six weeks after the initial POST application, a sequential application of bentazon and flumetsulam individually, and combinations of 2,4-D, 2,4-DB, and flumetsulam were applied over designated plots. Clover biomass was similar across all treatments except where it was reduced by sequential applications of 2,4-D + 2,4-DB + flumetsulam in the 2019 to 2020 season indicating that most treatments were safe for use on establishing living mulch clover. A single application of flumetsulam at the low rate or a single application of 2,4-D + 2,4-DB provided the greatest control of all weed species while minimizing clover injury when compared to the non-treated check. These herbicide options allow for control of problematic winter weeds during clover establishment, maximizing clover biomass and limiting canopy gaps that would allow for summer weed emergence.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1326
Author(s):  
Calvin F. Glaspie ◽  
Eric A. L. Jones ◽  
Donald Penner ◽  
John A. Pawlak ◽  
Wesley J. Everman

Greenhouse studies were conducted to evaluate the effects of soil organic matter content and soil pH on initial and residual weed control with flumioxazin by planting selected weed species in various lab-made and field soils. Initial control was determined by planting weed seeds into various lab-made and field soils treated with flumioxazin (71 g ha−1). Seeds of Echinochloa crus-galli (barnyard grass), Setaria faberi (giant foxtail), Amaranthus retroflexus (redroot pigweed), and Abutilon theophrasti (velvetleaf) were incorporated into the top 1.3 cm of each soil at a density of 100 seeds per pot, respectively. Emerged plants were counted and removed in both treated and non-treated pots two weeks after planting and each following week for six weeks. Flumioxazin control was evaluated by calculating percent emergence of weeds in treated soils compared to the emergence of weeds in non-treated soils. Clay content was not found to affect initial flumioxazin control of any tested weed species. Control of A. theophrasti, E. crus-galli, and S. faberi was reduced as soil organic matter content increased. The control of A. retroflexus was not affected by organic matter. Soil pH below 6 reduced flumioxazin control of A. theophrasti, and S. faberi but did not affect the control of A. retroflexus and E. crus-galli. Flumioxazin residual control was determined by planting selected weed species in various lab-made and field soils 0, 2, 4, 6, and 8 weeks after treatment. Eight weeks after treatment, flumioxazin gave 0% control of A. theophrasti and S. faberi in all soils tested. Control of A. retroflexus and Chenopodium album (common lambsquarters) was 100% for the duration of the experiment, except when soil organic matter content was greater than 3% or the soil pH 7. Eight weeks after treatment, 0% control was only observed for common A. retroflexus and C. album in organic soil (soil organic matter > 80%) or when soil pH was above 7. Control of A. theophrasti and S. faberi decreased as soil organic matter content and soil pH increased. Similar results were observed when comparing lab-made soils to field soils; however, differences in control were observed between lab-made organic matter soils and field organic matter soils. Results indicate that flumioxazin can provide control ranging from 75–100% for two to six weeks on common weed species.


1996 ◽  
Vol 10 (2) ◽  
pp. 253-257 ◽  
Author(s):  
Joan A. Dusky ◽  
William M. Stall

Imazethapyr was evaluated PRE and POST in five lettuce types and chicory under Florida field conditions. The relative sensitivity of leafy crop vigor (most sensitive to most tolerant) to imazethapyr PRE, based on 20% inhibition determined using regression analysis, was as follows: Boston > bibb > crisphead > romaine > leaf > escarole > endive. Leafy crop injury increased as the rate of imazethapyr applied POST increased, with all leafy crops responding in a similar manner. Surfactant addition increased imazethapyr phytotoxicity. Imazethapyr PRE treatments at 0.067 kg ai/ha provided greater than 80% control of livid amaranth, common purslane, flatsedge, and common lambsquarters. Imazethapyr POST at 0.067 kg/ha, with surfactant provided control greater than 85% of all weed species. Greater than 85% spiny amaranth control was provided by imazethapyr POST at 0.017 kg/ha. Use of surfactant with imazethapyr did not improve spiny amaranth control over imazethapyr with no surfactant. POST treatments did not decrease leafy crop yield compared with the hand-weeded check. Imazethapyr applied PRE reduced crop yield compared to the POST treatments and the hand-weeded control.


2006 ◽  
Vol 86 (3) ◽  
pp. 875-885 ◽  
Author(s):  
J. R. Moyer ◽  
S. N. Acharya

Weeds, especially dandelion (Taraxacum officinale Weber in F.H. Wigg.), tend to infest a forage alfalfa (Medicago sativa L.) stand 2 to 4 yr after establishment. To develop better weed management systems, experiments were conducted at Lethbridge, Alberta, from 1995 to 2002 and Creston, British Columbia, from 1998 to 2001, which included the alfalfa cultivars Beaver (standard type) and AC Blue J (Flemish type) and annual applications of metribuzin and hexazinone. These herbicides are registered for weed control in irrigated alfalfa in Alberta and alfalfa grown for seed. In addition, two sulfonylurea herbicides, metsulfuron and sulfosulfuron, and glyphosate were included. All of the herbicides except glyphosate controlled or suppressed dandelion and mustard family weeds. Metsulfuron at 5 g a.i. ha-1 almost completely controlled dandelion at both locations. However, after metsulfuron application at Lethbridge, dandelion was replaced with an infestation of downy brome, which is unpalatable for cattle. None of the herbicides increased total forage (alfalfa + weed) yield, and in some instances herbicides reduced forage quality by causing a shift from a palatable to an unpalatable weed species. However, it was observed that AC Blue J consistently yielded more than Beaver, and weed biomass was consistently less in the higher-yielding cultivar. AC Blue J was developed primarily for the irrigated area in southern Alberta and for southern British Columbia. Therefore, additional experiments should be conducted to determine which alfalfa cultivars have the greatest ability to compete with weeds in other regions of western Canada. Key words: Alfalfa yield, dandelion, forage quality, weed control


Sign in / Sign up

Export Citation Format

Share Document