Utilization of Biosolids in Forage Production Systems in Florida

EDIS ◽  
2017 ◽  
Vol 2017 (2) ◽  
pp. 4
Author(s):  
Maria L. Silveira ◽  
George A. O'Connor ◽  
Joao M. B. Vendramini

This four-page publication provides basic information about land application of biosolids to pastures and hayfields in Florida. The information contained in this document should be of interest to stakeholders, biosolids managers, students, and scientists interested in topics related to biosolids management practices and the potential benefits and risks associated with biosolid land application. Written by Maria L. Silveira, George A. O’Connor, and Joao M.B. Vendramini and published by the Department of Soil and Water Sciences.

2021 ◽  
Vol 5 ◽  
Author(s):  
Karen Johanna Enciso Valencia ◽  
Álvaro Rincón Castillo ◽  
Daniel Alejandro Ruden ◽  
Stefan Burkart

In many parts of the foothills of the Orinoquía region of Colombia, cattle production takes place on poorly drained soils. The region is dominated by extensive grazing systems of Brachiaira humidicola cv. Humidicola, a grass with high adaptation potential under temporal waterlogging conditions. Inadequate management practices and low soil fertility result in degradation, however, with important negative effects on pasture productivity and the quality and provision of (soil) ecosystem services–a situation that is likely to worsen in the near future due to climate change. Against this background, AGROSAVIA (Corporación Colombiana de Investigación Agropecuaria) selected Arachis pintoi CIAT 22160 cv. Centauro (Centauro) as a promising alternative for the sustainable intensification of livestock production and rehabilitation of degraded areas. This study assesses dual-purpose milk production in the foothills of the Colombian Orinoquía from an economic perspective. We compare two production systems: the Centauro–Brachiaira humidicola cv. Humidicola association (new system) and Brachiaira humidicola cv. Humidicola as a monoculture (traditional system). We used cashflow and risk assessment models to estimate economic indicators. The projections for economic returns consider changes in forage characteristics under regional climate change scenarios RCP (2.6, 8.5). The LIFE-SIM model was used to simulate dairy production. Results show that the inclusion of Centauro has the potential to increase animal productivity and profitability under different market scenarios. The impact of climatic variables on forage production is considerable in both climate change scenarios. Both total area and potential distribution of Centauro could change, and biomass production could decline. Brachiaira humidicola cv. Humidicola showed better persistence due to higher nitrogen levels in soil when grown in association with Centauro. The legume also provides a number of ecosystem services, such as improving soil structure and composition, and also contributes to reducing greenhouse gas emissions. This helps to improve the adaptation and mitigation capacity of the system.


2015 ◽  
Vol 32 (1) ◽  
pp. 33-42 ◽  
Author(s):  
Corliss A. O'Bryan ◽  
Philip Crandall ◽  
Divya Jaroni ◽  
Steven C. Ricke ◽  
Kristen E. Gibson

AbstractPasture-raised poultry (PP) production systems allow chickens, turkeys or other poultry types to be raised entirely on pasture or in small, open-air moveable pens with access to fresh pasture daily. With an increase in consumer demand for poultry products produced using more humane and potentially environmentally sustainable practices, PP production systems are regaining popularity among farmers across the USA. The majority of research on PP is related to meat quality and forage conditions while the environmental effects have remained largely unstudied. The rotation of poultry on pasture is one of the primary best management practices (BMP) used to avoid over grazing and buildup of excess nutrients and pathogens; however, BMPs for handling and processing of the associated wastes (i.e., wastewater, feathers, offal) related to on-farm processing and mobile poultry processing units (MPPU) are not as well established. Therefore, a study with PP growers in the southern USA was initiated to provide important baseline information on the potential environmental impacts of processing methods used by PP production systems. Here, three farms utilizing on-farm processing were sampled over a 9-month period and two farms utilizing a MPPU pilot plant were sampled over a 3-month period. Soil, compost and wastewater samples were collected during each sampling date for on-farm processing while only wastewater was collected at the MPPU pilot plant. Soil samples (24-cm cores) were analyzed for total nitrogen (TN), Mehlich-3 extractable phosphorus (M3-P) and moisture content. Compost derived from processing wastes was analyzed for TN, total phosphorus (TP), water extractable P and moisture content. Wastewaters were analyzed for total Kjeldahl nitrogen (TKN) and TP. Soil TN levels (0.075–0.30%) reported here are comparable with TN levels reported for various soils in the Southeastern USA while M3-P was generally below levels found in agricultural soils subject to conventional poultry litter application based on previously published data. Conversely, TN and TP levels—0.3 to 1.3 and <0.4%, respectively—in compost were well below recommended values (i.e., approximately 2% each of N and P) for compost highlighting an opportunity for PP growers to create a more useful compost for land application. Last, wastewater collected from both, on-farm processing and the MPPU measure TKN and TP levels were much less than conventional processing. Overall, the present study provided baseline data on soil and compost nutrients related to on-farm poultry processing as well as wastewater composition for on-farm processing and MPPUs.


EDIS ◽  
2013 ◽  
Vol 2013 (2) ◽  
Author(s):  
Maria L. Silveira ◽  
Joao M. Vendramini ◽  
Hiran M. Da Silva ◽  
Mariana Azenha

Many forage-based livestock production systems in Florida are characterized by extensive grazing with minimal inputs of commercial fertilizer and supplemental feed. In these systems, adequate soil fertility conditions are essential to sustain forage production. If nutrients become deficient, pasture and animal performance is reduced, and the economic returns of livestock operations may decline. This 3-page fact sheet discusses the different nutrient pathways in grazing pastures to help producers better understand how to promote nutrient cycling and pasture sustainability. Written by Maria L. Silveira, Joao M. B. Vendramini, Hiran M. da Silva, and Mariana Azenha, and published by the UF Department of Soil and Water Science, January 2013.  http://edis.ifas.ufl.edu/ss578 


2012 ◽  
Vol 26 (3) ◽  
pp. 575-578 ◽  
Author(s):  
Prasanta C. Bhowmik

Weed management is a common practice in golf courses, home lawns, and sod production systems. Sulfonylurea (SU) herbicides were initially introduced in the agricultural market in 1982; however, SUs were also evaluated for control of weeds and overseeded grasses. Later, SUs were evaluated for selective control of broadleaf weeds, sedges, and kyllinga species in cool- and warm-season turfgrasses. In the 1990s, chlorsulfuron and metsulfuron were registered for selective control of broadleaf weeds, such as wild garlic, spotted spurge, and difficult-to-control grasses, such as bahiagrass in turfgrass. Now, there are several SUs registered for specific weed management in both cool- and warm-season turfgrasses. The current status of SUs, along with potential benefits and drawbacks in using these herbicides for weed management practices, are discussed. The research findings, possible recommendations in relation to the safety of turfgrass (established and overseeding stands), environmental concerns (persistence and lateral movement), and management practices in cool- and warm-season turfgrasses are discussed, including the potential evolution of weed resistance.


2010 ◽  
Vol 50 (7) ◽  
pp. 705 ◽  
Author(s):  
R. G. Chataway ◽  
D. G. Barber ◽  
M. N. Callow

Dairy farms in Queensland were stratified by six regions, three levels of enterprise size (0.25–0.69, 0.7–1.39 or >1.4 ML milk/year) and two rainfall zones (<1000 and >1000 mm/year). Thirteen percent of farmers (89 farms) were surveyed using a prepared questionnaire to ascertain the current production systems, forage management practices and preferences for extension services. Herd size, dairy area, milk production per cow, the use of cropping, pit silage, concentrate input and irrigation input all increased (P < 0.05) with larger enterprises. At the same time the stocking rate on high milk volume farms was almost twice that on smaller farms. The drier zone (<1000 mm/year) was associated with lower stocking rate, higher per cow production and a greater emphasis on cropping and feedpad usage (P < 0.05). The importance of enterprise growth through intensification of the existing farm land resource base is indicated through these findings. Apart from ration formulation, processes used to manage cropping land, irrigation and grazing were primarily based on tradition or intuition. In valuing extension activities, farmers across all enterprise sizes were in general agreement that information products warranted only a small investment. As enterprise size increased, a more individualised and focussed extension service, delivered through targeted discussion groups and personal coaches was favoured.


2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 67-67
Author(s):  
Gabe J Pent

Abstract Winter feeds costs for small ruminants exceeds 50% of the total cost of most small ruminant production systems in the Southeastern U.S. Keeping these feed costs low is one of the most effective and time-tested ways to improve farm profitability. While maintaining an appropriate stocking rate will be critical for sustaining long-term farm productivity, a suite of other management practices is available to assist in this objective. Installing appropriate fence and watering system infrastructure for managing grazing will be critical for improving harvest efficiency and stockpiling forages for utilization when forage growth is limited. Filling gaps in forage production may also be achieved through the strategic use of a number of forage species, including warm-season or cool-season forages and annual or perennial forages. Managing stored forages appropriately during storing and feeding will help minimize feed losses, while producing quality hay will reduce the need for supplementary feeds. With the adoption of these proven practices, sheep and goat production may be optimized by allowing them to harvest their own feed almost year-round in the Southeastern U.S.


Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3585
Author(s):  
Lucy Dablin ◽  
Simon L. Lewis ◽  
William Milliken ◽  
Alexandre Monro ◽  
Mark A. Lee

Assessing the palatability of forage from locally adapted trees could improve the sustainability of livestock production systems. However, grasses continue to dominate livestock feed across the Amazon. We established a silvopastoral cattle farming system in Peru, comparing three different forage tree species with grass monocultures using a randomised block design. Trees were arranged in alleys of 0.5 × 7.5 m, planted alongside grass, and were directly browsed by cattle. Browse removal was estimated by three methods: destructive sampling, canopy measurements and leaf counts. We found that all three tree species were palatable to cattle. Plots containing trees and grass produced more available forage (mean > 2.2 Mg ha−1) for cattle than the grass monocultures (mean = 1.5 Mg ha−1). Destructive sampling below 1.6 m demonstrated that cattle consumed 99% of the available Erythrina berteroana forage, 75% of the available Inga edulis forage and 80% of the available Leucaena leucocephala forage in 8 days. This research demonstrates methodologies to estimate the intake of locally adapted browse species by cattle and highlights the potential benefits of silvopastoral systems in the Amazon. Planting trees could also benefit animal health and provide ecosystem services such as soil regeneration, enhanced nutrient cycling and carbon capture.


EDIS ◽  
2008 ◽  
Vol 2008 (6) ◽  
Author(s):  
Maria L. Silveira ◽  
Joao M. Vendramini ◽  
Patrick J. Hogue ◽  
James F. Selph

SL-259, a 4-page fact sheet by M. L. Silveira, J. M. Vendramini, P. J. Hogue, and J. F. Selph, addresses important issues relative to fertilizer efficiency and suggests alternatives for reducing fertilizer use and reducing production costs for forage production. Published by the UF Department of Soil and Water Science, June 2008. SL259/SS483: Dealing With High Fertilizer Costs in Forage Production Systems (ufl.edu)


EDIS ◽  
2013 ◽  
Vol 2013 (11) ◽  
Author(s):  
George Hochmuth ◽  
Laurie Trenholm ◽  
Don Rainey ◽  
Esen Momol ◽  
Claire Lewis ◽  
...  

Proper irrigation management is critical to conserve and protect water resources and to properly manage nutrients in the home landscape. How lawns and landscapes are irrigated directly impacts the natural environment, so landscape maintenance professionals and homeowners must adopt environmentally-friendly approaches to irrigation management. After selecting the right plant for the right place, water is the next critical factor to establish and maintain a healthy lawn and landscape. Fertilization is another important component of lawn and landscape maintenance, and irrigation must be applied correctly, especially following fertilization, to minimize potential nutrient losses. This publication supplements other UF/IFAS Extension publications that also include information on the role of soil and the root zone in irrigation management. This publication is designed to help UF/IFAS Extension county agents prepare materials to directly address nutrient losses from lawns and landscapes caused by inadequate irrigation management practices. This 6-page fact sheet was written by George Hochmuth, Laurie Trenholm, Don Rainey, Esen Momol, Claire Lewis, and Brian Niemann, and published by the UF Department of Soil and Water Science, October 2013. http://edis.ifas.ufl.edu/ss586


1993 ◽  
Vol 28 (3-5) ◽  
pp. 691-700 ◽  
Author(s):  
J. P. Craig ◽  
R. R. Weil

In December, 1987, the states in the Chesapeake Bay region, along with the federal government, signed an agreement which called for a 40% reduction in nitrogen and phosphorus loadings to the Bay by the year 2000. To accomplish this goal, major reductions in nutrient loadings associated with agricultural management practices were deemed necessary. The objective of this study was to determine if reducing fertilizer inputs to the NT system would result in a reduction in nitrogen contamination of groundwater. In this study, groundwater, soil, and percolate samples were collected from two cropping systems. The first system was a conventional no-till (NT) grain production system with a two-year rotation of corn/winter wheat/double crop soybean. The second system, denoted low-input sustainable agriculture (LISA), produced the same crops using a winter legume and relay-cropped soybeans into standing wheat to reduce nitrogen and herbicide inputs. Nitrate-nitrogen concentrations in groundwater were significantly lower under the LISA system. Over 80% of the NT groundwater samples had NO3-N concentrations greater than 10 mgl-1, compared to only 4% for the LISA cropping system. Significantly lower soil mineral N to a depth of 180 cm was also observed. The NT soil had nearly twice as much mineral N present in the 90-180 cm portion than the LISA cropping system.


Sign in / Sign up

Export Citation Format

Share Document