scholarly journals SURVEILLANCE OF AEDES AEGYPTI AFTER RESURGENCE IN DOWNTOWN ST. AUGUSTINE, NORTHEASTERN FLORIDA

Author(s):  
Daniel Dixon

Aedes aegypti is an anthropophilic vector of several arboviruses, including yellow fever, Dengue virus, Chikungunya virus, and the infamous Zika virus. In 2016, Zika virus was spreading rapidly throughout Brazil and mosquito control districts expected Zika virus would be imported to Florida and vectored by endemic Aedes aegypti. Aedes aegypti often takes advantage of cryptic oviposition sites and therefore circumvents conventional control and surveillance strategies used by mosquito control practitioners. The objective of this study was to find Ae. aegypti breeding sites in the tourist district of Saint Augustine, FL, using a door-to-door on-foot approach. Mosquito control technicians, biologists and interns worked to inspect and treat each property for Ae. aegypti. Additionally, residents were informed about Ae. aegypti and its public health risk factors. In total, Anastasia Mosquito Control District inspected 1199 of the 1995 parcels in downtown Saint Augustine (60% coverage) in three months. Artificial containers were found at 1,099 of the homes inspected, and Ae. aegypti were found at 120 homes in the area. Each property where mosquito larvae and/or adults were detected was treated using source reduction, larvicides and adulticides. Residents were educated about this project and Ae. aegypti via small flyers, door hangers, pamphlets and/or verbal communication. This study provided insight into the location of Ae. aegypti breeding sites in the tourist district of Saint Augustine, FL, which will facilitate future control efforts.

2021 ◽  
Vol 3 (2) ◽  
pp. 078-082
Author(s):  
Abdelmonem Eltiyab Houmida Ali ◽  
Mutaman Ali A. Kehail

There are many methods used for mosquito control. Depending on the situation, source reduction (removing stagnant water), bio-control (importing natural predators), trapping, and insecticides to kill larvae or adults may be used. Some aquatic predators were reputed as biological control agents for mosquito larvae. Hence they have to be considered when experimenting on the lethal effects of any material on mosquito larvae. The objectives of this study were to study the effects of neem leaves and usher latex against Anopheles and Culex larvae and some of their aquatic predators (hemipteran boatman (HB), tadpole (T), swimming beetle larvae (SBL) and adult (SBA) and mayfly naiad (MF)) in some breeding sites around Wad Medani Town. Gezira State, Sudan. Two villages were selected for conducting this study. The count of the mosquito larvae and the aquatic predators continued for four days from applying natural products. The results showed that, mosquito’s larvae were affected more than the aquatic by Neem leaves and Ushar latex. The study of the microclimates in the breeding sites will help to correlate toxicity to any level of any environmental factor.


Insects ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 230 ◽  
Author(s):  
Corey L. Brelsfoard ◽  
James W. Mains ◽  
Steve Mulligan ◽  
Anthony Cornel ◽  
Jodi Holeman ◽  
...  

Aedes aegypti continues to spread globally and remains a challenge to control, in part due to its ‘cryptic behavior’ in that it often deposits eggs (oviposits) in larval habitats that are difficult to find and treat using traditional methods. Auto-dissemination strategies target these cryptic breeding sites by employing mosquitoes to deliver lethal doses of insecticide. This report describes the initial field trials of an application known as Autodissemination Augmented by Males (ADAM), utilizing A. aegypti males dusted with pyriproxyfen (PPF). Findings presented here are drawn from both caged and field trial studies. Together, these trials examined for the ability of A. aegypti males to disseminate PPF and to impact field populations. PPF-dusted males were able to effectively deliver lethal doses of PPF to oviposition sites under the conditions tested. Results from field trials in Florida and California demonstrated reduced A. aegypti populations in treated areas, compared to areas where PPF-treated males were not released. These results indicate that the release of PPF-dusted A. aegypti males can impact A. aegypti populations as measured by both reduced larval survival and lower numbers of adult female A. aegypti. We propose the ADAM approach as an addition to existing mosquito control techniques targeting A. aegypti and other mosquitoes that utilize cryptic larval habitats.


2019 ◽  
Vol 57 (3) ◽  
pp. 957-961
Author(s):  
Kyran M Staunton ◽  
Barukh B Rohde ◽  
Michael Townsend ◽  
Jianyi Liu ◽  
Mark Desnoyer ◽  
...  

Abstract Aedes aegypti (Linnaeus), the primary vectors of the arboviruses dengue virus and Zika virus, continue to expand their global distributions. In efforts to better control such species, several mosquito control programs are investigating the efficacy of rearing and releasing millions of altered male Aedes throughout landscapes to reduce populations and disease transmission risk. Unfortunately, little is known about Ae. aegypti, especially male, dispersal behaviors within urban habitats. We deployed Sound-producing Gravid Aedes Traps (SGATs) in Cairns, northern Australia, to investigate male Ae. aegypti attraction to various oviposition container configurations. The traps were arranged to include: 1) water only, 2) organically infused water, 3) infused water and L3 larvae, 4) infused water and a human-scented lure, and lastly 5) no water or olfactory attractant (dry). Our data suggest that males were more attracted to SGATs representing active larval sites than potential larval sites, but were equally attracted to dry SGATs relative to those containing water and/or infusion. Additionally, we found that female Ae. aegypti were equally attracted to wet SGATs, with or without infusion, but not dry ones. These results suggest that male Ae. aegypti within northern Australia are more attracted to active larval sites and equally attracted to dry containers as wet or infused ones. Additionally, female Ae. aegypti are unlikely to enter dry containers. Such findings contribute to our understanding of potentially attractive features for local and released Ae. aegypti throughout the northern Australian urban landscape.


2018 ◽  
Vol 147 ◽  
Author(s):  
Alberto J. Alaniz ◽  
Mario A. Carvajal ◽  
Antonella Bacigalupo ◽  
Pedro E. Cattan

AbstractZika virus (ZIKV) is an arbovirus transmitted mainly by Aedes aegypti mosquitoes. Recent scientific evidence on Culex quinquefasciatus has suggested its potential as a vector for ZIKV, which may change the current risk zones. We aimed to quantify the world population potentially exposed to ZIKV in a spatially explicit way, considering the primary vector (A. aegypti) and the potential vector (C. quinquefasciatus). Our model combined species distribution modelling of mosquito species with spatially explicit human population data to estimate ZIKV exposure risk. We estimated the potential global distribution of C. quinquefasciatus and estimated its potential interaction zones with A. aegypti. Then we evaluated the risk zones for ZIKV considering both vectors. Finally, we quantified and compared the people under risk associated with each vector by risk level, country and continent. We found that C. quinquefasciatus had a more temperate distribution until 42° in both hemispheres, while the risk involving A. aegypti is concentrated mainly in tropical latitudes until 35° in both hemispheres. Globally, 4.2 billion people are under risk associated with ZIKV. Around 2.6 billon people are under very high risk associated with C. quinquefasciatus and 1 billion people associated with A. aegypti. Several countries could be exposed to ZIKV, which emphasises the need to clarify the competence of C. quinquefasciatus as a potential vector as soon as possible. The models presented here represent a tool for risk management, public health planning, mosquito control and preventive actions, especially to focus efforts on the most affected areas.


Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 177 ◽  
Author(s):  
Tereza Magalhaes ◽  
Alexis Robison ◽  
Michael Young ◽  
William Black ◽  
Brian Foy ◽  
...  

In urban settings, chikungunya, Zika, and dengue viruses are transmitted by Aedes aegypti mosquitoes. Since these viruses co-circulate in several regions, coinfection in humans and vectors may occur, and human coinfections have been frequently reported. Yet, little is known about the molecular aspects of virus interactions within hosts and how they contribute to arbovirus transmission dynamics. We have previously shown that Aedes aegypti exposed to chikungunya and Zika viruses in the same blood meal can become coinfected and transmit both viruses simultaneously. However, mosquitoes may also become coinfected by multiple, sequential feeds on single infected hosts. Therefore, we tested whether sequential infection with chikungunya and Zika viruses impacts mosquito vector competence. We exposed Ae. aegypti mosquitoes first to one virus and 7 days later to the other virus and compared infection, dissemination, and transmission rates between sequentially and single infected groups. We found that coinfection rates were high after sequential exposure and that mosquitoes were able to co-transmit both viruses. Surprisingly, chikungunya virus coinfection enhanced Zika virus transmission 7 days after the second blood meal. Our data demonstrate heterologous arbovirus synergism within mosquitoes, by unknown mechanisms, leading to enhancement of transmission under certain conditions.


BIOEDUKASI ◽  
2020 ◽  
pp. 1
Author(s):  
Rima Gloria Purwanto ◽  
Dwi Wahyuni ◽  
Joko Waluyo

Abstract: Aedes aegypti L. is a mosquito carrying dengue virus that causes dengue fever, especially in Southeast Asia which is a tropical rain forest region which is a habitat for mosquito growth. Aedes aegypti L. mosquito control is carried out by chemical means of fogging and using abate but this control actually causes Aedes aegypti L. mosquitoes to become resistant or immune to chemical drugs so that a new breakthrough is created by making bioinsecticides biologically to eradicate the Aedes aegypti L. mosquito. with characteristics that are environmentally friendly and do not kill non-target animals and cause the Aedes aegypti L. mosquito not to become resistant. To be able to realize this desire so that the sugar cane granules extract of Annona squamosa L. containing active compounds in the form of annonain and squamosin so that they are toxic to Aedes aegypti L. mosquito larvae. Further research is to test the heating temperature level of the granules of Annona squamosa L. extract temperature of 40 ° C and 60 ° C which is more deadly of Aedes aegypti L. mosquito larvae. This research method uses a completely randomized design with four repetitions. The temperature of 60 ° C uses concentrations of 1 ppm, 6 ppm, 12 ppm, 18 ppm, 24 ppm and 30 ppm. As for the temperature of 40 ° C using concentrations of 1 ppm, 7 ppm, 14 ppm, 21 ppm, 28 ppm, and 35 ppm, each temperature compared with aquadest and abate. Data analyzed using probit analysis to determine the LC50, then followed by a statistical test paired sample T-test with SPSS to find out a significant difference between heating temperatures of 40 ° C to 60 ° C. These results then show that a higher temperature of 60 ° C has a higher level of toxicity compared to a lower temperature of 40 ° C.


Insects ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 251 ◽  
Author(s):  
Ying-An Chen ◽  
Yi-Ting Lai ◽  
Kuo-Chih Wu ◽  
Tsai-Ying Yen ◽  
Chia-Yang Chen ◽  
...  

The policy regarding mosquito control strategies in Taiwan is based on integrated vector management (IVM). The major approach is source reduction via collaboration by both residents and governments. However, small and cryptic habitats of dengue vectors are hard to find and eliminate in urban communities. Therefore, this study evaluated a complementary approach that targeted cryptic habitats by utilizing mosquitoes themselves as vehicles to transfer an insect growth regulator, pyriproxyfen (PPF), to their breeding sites; the amount of PPF in breeding water was determined with ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC–MS/MS). A bioassay conducted by introducing ten late-instar larvae into PPF solution was performed to assess emergence inhibition (EI). PPF was found at 0.56 ± 0.04 ng in 25 mL of water by dissemination via ten Aedes aegypti mosquitoes exposed to 0.01% PPF, leading to 100% EI. After the community-level source reduction, a field trial in Kaohsiung in Southern Taiwan showed that 30.8–31.5% of cryptic ovitraps reached EI ≥ 50% one month after spraying 0.01% PPF in microhabitats favored by mosquitoes. IVM in parallel with residual spraying of PPF on resting surfaces of mosquitoes could serve as a simple and complementary approach to reduce cryptic larval sources in urban communities in Southern Taiwan.


2020 ◽  
Author(s):  
Christopher D. Aretz ◽  
Sujay V. Kharade ◽  
Keagan S. Chronister ◽  
Erick J. Martinez Rodriguez ◽  
Peter M. Piermarini ◽  
...  

We have discovered new chemical compounds that are characterized as Kir channel inhibitors of the Aedes aegypti mosquito. This is important as the Ae. aegypti mosquito is the primary vector for Zika virus (ZIKV), Dengue virus (DENV) and chikungunya virus (CHIKV). Traditional mosquitocides are plagued with significant resistance and developing new compounds with novel mechanisms of action are vitally important. Lastly, we show that our compounds are potent larvicides against pyrethroid-susceptible and pyrethroid-resistant strains.


2021 ◽  
Author(s):  
Gordana Rašić ◽  
Igor Filipović ◽  
Sean L Wu ◽  
Tomás M León ◽  
Jared B Bennett ◽  
...  

AbstractA rare example of a successful long-term elimination of the mosquito Aedes aegypti is in Brisbane, Queensland, where the legislatively-enforced removal of rainwater tanks drove its disappearance by the mid-1950s. However, a decade-long drought led to the mass installation of rainwater tanks throughout the region, re-introducing critical breeding sites for the mosquito’s persistence in this subtropical region. With Ae. aegypti re-invading towns just 150 km north of Brisbane, we examined the potential for their sustained elimination. Through genomic analyses, we estimated historical expansion and current isolation between neighboring populations as close as 15 kilometers. The estimated recent migration rate, entomological and meteorological data were used to calibrate the simulations of elimination campaigns in the two southernmost populations. Our simulations indicate that Ae. aegypti could be eliminated with moderate release numbers of incompatible Wolbachia-infected (IIT) males (sorted with an error rate ≤10-6) if non-compliant rainwater tanks are removed first. With this combined campaign, highly effective suppression (>99%) was predicted in both towns, and complete elimination was predicted in 35% of simulations in one town. Without tank removal, however, IIT led to a moderate suppression (61-93%) even with a 40:1 ratio of released IIT males to local males. Moreover, with a ratio of >20:1, Wolbachia establishment was predicted when the sorting error was >10-7. Our conservative estimates of intervention outcomes inform the planning of Ae. aegypti elimination in the region, and offer insight into the effective combinations of conventional and novel control tools, particularly for vulnerable mosquito populations at range margins.SignificanceAfter decades of range stagnation in Australia, the Aedes aegypti mosquito is expanding southward, approaching the most-densely-populated areas of Queensland. Using population genomics and simulation modeling of elimination campaigns, we show that Australia’s southernmost populations of this disease vector are genetically isolated and could be eliminated with moderate releases of incompatible Wolbachia-infected males if major larval breeding sites (non-compliant rainwater tanks) are removed first. The risk of Wolbachia establishment for this approach is low, and so is the risk of quick mosquito re-invasion. Our conservative estimates of intervention outcomes inform the planning of Ae. aegypti elimination in the region, and offer new insight into the benefits of combining conventional and novel control tools, particularly for mosquito populations at range margins.


Author(s):  
Bethany L McGregor ◽  
C Roxanne Connelly

Abstract Aedes aegypti (L) is an anthropophilic mosquito involved in the transmission of a variety of viral pathogens worldwide including dengue, chikungunya, yellow fever, and Zika viruses. This species, native to Africa, is well established in the continental U.S. (CONUS) and occasionally contributes to localized outbreaks of viral diseases. In the last seven decades, mosquito control programs in the CONUS have been focused on vectors of eastern equine encephalitis, St. Louis encephalitis, and West Nile viruses, as well as nuisance species. Aedes aegypti receives little control focus except during outbreak periods, which has led to a lack of information on appropriate and effective control options targeting Ae. aegypti in the CONUS. As such, in the event of an Ae. aegypti-borne arboviral outbreak in the CONUS, there are limited evidence-based control recommendations or protocols in place. Autochthonous outbreaks of Ae. aegypti-borne pathogens have occurred recently in the CONUS, including dengue outbreaks in 2010 and 2013, a chikungunya outbreak in 2014, and the 2016 outbreak of Zika virus. The increasing frequency of Ae. aegypti-borne outbreaks necessitates increased attention and research on control of this species to prevent and mitigate future outbreaks. This review consolidates and synthesizes the available literature on control of Ae. aegypti, specifically within the CONUS, focusing on data generated through operational applications as well as field and semifield experiments. The purpose of this review is to identify and highlight areas where additional research is needed. The review covers chemical control and insecticide resistance, biological control, source reduction, trapping, and alternative techniques.


Sign in / Sign up

Export Citation Format

Share Document