scholarly journals Late Replication of the Inactive X Chromosome Is Independent of the Compactness of Chromosome Territory in Human Pluripotent Stem Cells

Acta Naturae ◽  
2013 ◽  
Vol 5 (2) ◽  
pp. 54-61
Author(s):  
A. V. Panova ◽  
E. D. Nekrasov ◽  
M. A. Lagarkova ◽  
S. L. Kiselev ◽  
A. N. Bogomazova

Dosage compensation of the X chromosomes in mammals is performed via the formation of facultative heterochromatin on extra X chromosomes in female somatic cells. Facultative heterochromatin of the inactivated X (Xi), as well as constitutive heterochromatin, replicates late during the S-phase. It is generally accepted that Xi is always more compact in the interphase nucleus. The dense chromosomal folding has been proposed to define the late replication of Xi. In contrast to mouse pluripotent stem cells (PSCs), the status of X chromosome inactivation in human PSCs may vary significantly. Fluorescence in situ hybridization with a whole X-chromosome-specific DNA probe revealed that late-replicating Xi may occupy either compact or dispersed territory in human PSCs. Thus, the late replication of the Xi does not depend on the compactness of chromosome territory in human PSCs. However, the Xi reactivation and the synchronization in the replication timing of X chromosomes upon reprogramming are necessarily accompanied by the expansion of X chromosome territory.

2021 ◽  
Author(s):  
Matthew Micheal Edwards ◽  
Michael V. Zuccaro ◽  
Ido Sagi ◽  
Qiliang Ding ◽  
Dan Vershkov ◽  
...  

Haploid human embryonic stem cells (ESCs) provide a powerful genetic system but diploidize at high rates. We hypothesized that diploidization results from aberrant DNA replication. To test this, we profiled DNA replication timing in isogenic haploid and diploid ESCs. The greatest difference was the earlier replication of the X chromosome in haploids, consistent with the lack of X chromosome inactivation. Surprisingly, we also identified 21 autosomal regions that had dramatically delayed replication in haploids, extending beyond the normal S phase and into G2/M. Haploid-delays comprised a unique set of quiescent genomic regions that are also under-replicated in polyploid placental cells. The same delays were observed in female ESCs with two active X chromosomes, suggesting that increased X chromosome dosage may cause delayed autosomal replication. We propose that incomplete replication at the onset of mitosis could prevent cell division and result in re-entry into the cell cycle and whole genome duplication.


2021 ◽  
Author(s):  
Matthew M. Edwards ◽  
Michael V. Zuccaro ◽  
Ido Sagi ◽  
Qiliang Ding ◽  
Dan Vershkov ◽  
...  

Haploid human embryonic stem cells (ESCs) provide a powerful genetic system but diploidize at high rates. We hypothesized that diploidization results from aberrant DNA replication. To test this, we profiled DNA replication timing in isogenic haploid and diploid ESCs. The greatest difference was the earlier replication of the X Chromosome in haploids, consistent with the lack of X-Chromosome inactivation. We also identified 21 autosomal regions that had delayed replication in haploids, extending beyond the normal S phase and into G2/M. Haploid-delays comprised a unique set of quiescent genomic regions that are also underreplicated in polyploid placental cells. The same delays were observed in female ESCs with two active X Chromosomes, suggesting that increased X-Chromosome dosage may cause delayed autosomal replication. We propose that incomplete replication at the onset of mitosis could prevent cell division and result in re-entry into the cell cycle and whole genome duplication.


2019 ◽  
Author(s):  
S Mandal ◽  
D Chandel ◽  
H Kaur ◽  
S Majumdar ◽  
M Arava ◽  
...  

AbstractRecently, a unique form of X-chromosome dosage compensation has been demonstrated in human preimplantation embryos, which happens through the dampening of X-linked gene expression from both X-chromosomes. Subsequently, X-chromosome dampening has also been demonstrated in female human pluripotent stem cells (hPSCs) during the transition from primed to naïve state. However, the existence of dampened X-chromosomes remains controversial in both embryos and hPSCs. Specifically, in preimplantation embryos it has been shown that there is inactivation of X-chromosome instead of dampening. Here, we have performed allelic analysis of X-linked genes at the single cell level in hPSCs and found that there is partial reactivation of the inactive X-chromosome instead of chromosome-wide dampening upon conversion from primed to naïve state. In addition, our analysis suggests that the reduced X-linked gene expression in naïve hPSCs might be the consequence of erasure of active X-chromosome upregulation.


2018 ◽  
Vol 11 ◽  
pp. 251686571880293 ◽  
Author(s):  
Adrian Janiszewski ◽  
Juan Song ◽  
Lotte Vanheer ◽  
Natalie De Geest ◽  
Vincent Pasque

How the epigenome of one cell type is remodeled during reprogramming into another unrelated type of cell remains unclear. Overexpression of transcription factors in somatic cells enables the induction of induced pluripotent stem cells (iPSCs). This process entails genome-wide remodeling of DNA methylation, chromatin, and transcription. Recent work suggests that the number of active X chromosomes present in a cell influences remodeling of DNA methylation during somatic cell reprogramming to mouse iPSCs. Female iPSCs with 2 active X chromosomes display global DNA hypomethylation, whereas male XY iPSCs show DNA methylation levels similar to the somatic cells they are derived from. Global DNA methylation erasure in female iPSCs takes place genome-wide and involves repression of DNA methyltransferases. However, on loss of one X chromosome, female iPSCs acquire a DNA methylation landscape resembling that of XY iPSCs. Therefore, it is the X chromosome dosage that dictates global DNA methylation levels in iPSCs. Here, we discuss the evidence that links X chromosome dosage with the regulation of DNA methylation in pluripotent stem cells. We focus on iPSCs reprogramming studies, where X chromosome status is a novel factor impacting our understanding of epigenetic remodeling.


2021 ◽  
Vol 22 (3) ◽  
pp. 1114
Author(s):  
Ali Youness ◽  
Charles-Henry Miquel ◽  
Jean-Charles Guéry

Women represent 80% of people affected by autoimmune diseases. Although, many studies have demonstrated a role for sex hormone receptor signaling, particularly estrogens, in the direct regulation of innate and adaptive components of the immune system, recent data suggest that female sex hormones are not the only cause of the female predisposition to autoimmunity. Besides sex steroid hormones, growing evidence points towards the role of X-linked genetic factors. In female mammals, one of the two X chromosomes is randomly inactivated during embryonic development, resulting in a cellular mosaicism, where about one-half of the cells in a given tissue express either the maternal X chromosome or the paternal one. X chromosome inactivation (XCI) is however not complete and 15 to 23% of genes from the inactive X chromosome (Xi) escape XCI, thereby contributing to the emergence of a female-specific heterogeneous population of cells with bi-allelic expression of some X-linked genes. Although the direct contribution of this genetic mechanism in the female susceptibility to autoimmunity still remains to be established, the cellular mosaicism resulting from XCI escape is likely to create a unique functional plasticity within female immune cells. Here, we review recent findings identifying key immune related genes that escape XCI and the relationship between gene dosage imbalance and functional responsiveness in female cells.


2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Antonia A. Dominguez ◽  
H. Rosaria Chiang ◽  
Meena Sukhwani ◽  
Kyle E. Orwig ◽  
Renee A. Reijo Pera

Development ◽  
2016 ◽  
Vol 143 (16) ◽  
pp. 2958-2964 ◽  
Author(s):  
Shin Kobayashi ◽  
Yusuke Hosoi ◽  
Hirosuke Shiura ◽  
Kazuo Yamagata ◽  
Saori Takahashi ◽  
...  

Author(s):  
Alessandra Spaziano ◽  
Dr Irene Cantone

Mammalian females (XX) silence transcription on one of the two X chromosomes to compensate the expression dosage with males (XY). This process — named X-chromosome inactivation — entails a variety of epigenetic modifications that act synergistically to maintain silencing and make it heritable through cell divisions. Genes along the inactive X chromosome are, indeed, refractory to reactivation. Nonetheless, X-chromosome reactivation can occur alongside with epigenome reprogramming or by perturbing multiple silencing pathways. Here we review the events associated with X-chromosome reactivation during in vivo and in vitro reprogramming and highlight recent efforts in inducing Xi reactivation by molecular perturbations. This provides us with a first understanding of the mechanisms underlying X-chromosome reactivation, which could be tackled for therapeutic purposes.


Sign in / Sign up

Export Citation Format

Share Document