scholarly journals Date-Palm Fiber as a Reinforcement Filler in Polymer Composites

2020 ◽  
Vol 12 (2) ◽  
pp. 78-85
Author(s):  
Tariq Syed ◽  
Abdul Salam Thelakkadan ◽  
Saad Al-Hussain

Natural fibers offer a great advantage of being used as a reinforcement in polymer matrix composites because of the many advantages natural fibers offer over conventional reinforcement fillers. Date palm fiber is one of the most available natural fibrous materials in the Middle Eastern region to be exploited as a fiber reinforcement in polymers. In the present work, the fibers extracted from the date palm tree trunk, branches, and leaves were used for the reinforcement of the polypropylene matrix. Electron microscopic images show excellent bonding between the fiber and matrix as no fiber pullout is observed. The thermal (heat deflection temperature) and mechanical properties (Izod impact, tensile and flexural modulus) of the composites increased with an increase in the fiber loading from 20% to 60%, which in turn resulted in excellent mechanical properties in the final product. The work has immense significance in using date palm as an easily available natural resource for a useful product.

2018 ◽  
Vol 773 ◽  
pp. 94-99 ◽  
Author(s):  
Venitalitya Augustia ◽  
Achmad Chafidz ◽  
Lucky Setyaningsih ◽  
Muhammad Rizal ◽  
Mujtahid Kaavessina ◽  
...  

The trend of using natural fibers as green filler in the fabrication of polymer composites is increasing. One of these natural fibers is date palm fiber (DPF). Date palm fiber is considered as agricultural waste in certain areas, such as Middle East countries. Therefore, the utilization of this fiber in the composites fabrication is an interesting topic of research. In the current study, composites were prepared by melt blending DPF with high density polyethylene (HDPE). Five different DPF loadings were studied (i.e. 0, 5, 10, 20, 30 wt%). The effect of the DPF loadings on the mechanical properties and water absorption behavior of the composites were investigated. The tensile test result showed that tensile strengths of all the composites samples were all higher than the neat HDPE with the maximum improvement was achieved at the DPF loading of 5 wt% (i.e. DFC-5), which was about 19.23 MPa (138% higher than the neat HDPE). Whereas, the flexural test result showed that the flexural strength of the composites slightly increased compared to that of the neat HDPE only until 5 wt% DPF loading (i.e. DFC-5). Afterward, the flexural strength of the DFC-10 was equal to that of the neat HDPE, and decreasing with further increase of DPF loadings. Additionally, the water absorption test result showed that the water absorption rate and uptake of water (at equilibrium) increased with the increase of DPF loading.


2008 ◽  
Vol 47-50 ◽  
pp. 193-196 ◽  
Author(s):  
Ahmad Alawar ◽  
Ahmed M. Hamed ◽  
Khalifa Al-Kaabi

Recently, the interest has increased to recycle things after use. In addition, the pressure of the environment defence organizations has increased in the same direction. Accordingly, the composite industry has begun investigating the possibility of increasing the proportion of recycled or biodegradable composites. This leaded to search about environment eco-friendly reinforcement and resins systems while providing the same performance as their man made counterparts. Natural fibers offer the possibility to play the role of the reinforcing material. In this study, we mix the 25% untreated date palm tree fibers with 75% polypropylene using double screw extruder. Comparison between plane polypropylene and 25 % raw date palm fiber was done. Tensile test and water absorption test were done upon plain polypropylene and 25% raw date palm fiber specimens. Tensile strength of reinforced polypropylene was about 20% lower than plain polypropylene. In the other hand, modulus of elasticity of composite showed an increase of about 30% compared to plane polypropylene. Water absorption was less sound in deterioration of the composite.


2020 ◽  
Vol 38 (3B) ◽  
pp. 104-114
Author(s):  
Samah M. Hussein

This research has been done by reinforcing the matrix (unsaturated polyester) resin with natural material (date palm fiber (DPF)). The fibers were exposure to alkali treatment before reinforcement. The samples have been prepared by using hand lay-up technique with fiber volume fraction of (10%, 20% and 30%). After preparation of the mechanical and physical properties have been studied such as, compression, flexural, impact strength, thermal conductivity, Dielectric constant and dielectric strength. The polyester composite reinforced with date palm fiber at volume fraction (10% and 20%) has good mechanical properties rather than pure unsaturated polyester material, while the composite reinforced with 30% Vf present poor mechanical properties. Thermal conductivity results indicated insulator composite behavior. The effect of present fiber polar group induces of decreasing in dielectric strength, and increasing dielectric constant. The reinforcement composite 20% Vf showed the best results in mechanical, thermal and electrical properties.


2021 ◽  
Vol 11 (12) ◽  
pp. 5317
Author(s):  
Rafał Malinowski ◽  
Aneta Raszkowska-Kaczor ◽  
Krzysztof Moraczewski ◽  
Wojciech Głuszewski ◽  
Volodymyr Krasinskyi ◽  
...  

The need for the development of new biodegradable materials and modification of the properties the current ones possess has essentially increased in recent years. The aim of this study was the comparison of changes occurring in poly(ε-caprolactone) (PCL) due to its modification by high-energy electron beam derived from a linear electron accelerator, as well as the addition of natural fibers in the form of cut hemp fibers. Changes to the fibers structure in the obtained composites and the geometrical surface structure of sample fractures with the use of scanning electron microscopy were investigated. Moreover, the mechanical properties were examined, including tensile strength, elongation at break, flexural modulus and impact strength of the modified PCL. It was found that PCL, modified with hemp fibers and/or electron radiation, exhibited enhanced flexural modulus but the elongation at break and impact strength decreased. Depending on the electron radiation dose and the hemp fibers content, tensile strength decreased or increased. It was also found that hemp fibers caused greater changes to the mechanical properties of PCL than electron radiation. The prepared composites exhibited uniform distribution of the dispersed phase in the polymer matrix and adequate adhesion at the interface between the two components.


2020 ◽  
Vol 148 ◽  
pp. 316-323
Author(s):  
Fatima-Zahra Semlali Aouragh Hassani ◽  
Khadija El Bourakadi ◽  
Nawal Merghoub ◽  
Abou el kacem Qaiss ◽  
Rachid Bouhfid

2020 ◽  
pp. 002199832097519
Author(s):  
Fatma Naiiri ◽  
Allègue Lamis ◽  
Salem Mehdi ◽  
Zitoune Redouane ◽  
Zidi Mondher

Natural fibers are increasingly used in composites because of their low cost and good mechanical properties. Cement reinforced with natural fibersis contemplates as a new generation of construction materials with superior mechanical and thermal performance. This study of three sizes’effect of Doum palm fiber explores the mortar’s behavior reinforced with different fiber ratio. The aim is to determine the optimal addition to improve mechanical and thermal properties of natural fiber reinforced cements. Physical, mechanical and thermal properties of composite are examined. Tensile properties of Doum fibers are verified to determine their potential as reinforced material. Findings prove that the use of alkali-treated Doum fiber as reinforcement in cement mortar composite leads to the upgrading of the mechanical properties including thermo-physical properties against composites reinforced with raw fibers and control cement mortars. While, the compression and flexural strength of the cement mortar reinforced with alkali-treated Doum fiber with diameter 0.3 mm (CT3) are metered to be 11.11 MPa, 5.22 MPa, respectively for fiber content 0.5%. Additionally, based on thermo-physical tests, it is assessed that the thermal conductivity and diffusivity decrease for cement mortar reinforced with Doum fiber with diameter 0.2 mm (CT2).


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
F. Mirjalili ◽  
L. Chuah ◽  
E. Salahi

A nanocomposite containing polypropylene (PP) and nanoα-Al2O3particles was prepared using a Haake internal mixer. Mechanical tests, such as tensile and flexural tests, showed that mechanical properties of the composite were enhanced by addition of nanoα-Al2O3particles and dispersant agent to the polymer. Tensile strength was approximately∼16% higher than pure PP by increasing the nanoα-Al2O3loading from 1 to 4 wt% into the PP matrix. The results of flexural analysis indicated that the maximum values of flexural strength and flexural modulus for nanocomposite without dispersant were 50.5 and 1954 MPa and for nanocomposite with dispersant were 55.88 MPa and 2818 MPa, respectively. However, higher concentration of nanoα-Al2O3loading resulted in reduction of those mechanical properties that could be due to agglomeration of nanoα-Al2O3particles. Transmission and scanning electron microscopic observations of the nanocomposites also showed that fracture surface became rougher by increasing the content of filler loading from 1 to 4% wt.


2018 ◽  
Vol 773 ◽  
pp. 40-45 ◽  
Author(s):  
Achmad Chafidz ◽  
Venitalitya Augustia ◽  
Ariany Zulkania ◽  
Asmanto Subagyo ◽  
Mujtahid Kaavessina ◽  
...  

In the recent years, the trend of using renewable source (green) fillers in the composites fabrication is increasing. One of these green fillers is natural fibers, which referred to the plant fibers, such as date palm fiber (DPF). In the present work, high-density polyethylene (HDPE)/DPF composites have been prepared. Four different DPF loadings were used (i.e. 0, 5, 10, 20 wt%) to prepare the composites. The effect of DPF loadings on the melt rheological behavior of the HDPE/DPF composites were studied. The melt rheological test results showed that both of storage modulus (Gʹ) and loss modulus (Gʺ) increased with the increase of DPF loadings. Additionally, the Han plot showed an upward shift from neat HDPE (i.e. DFC-0) to DFC-20, which indicated that the melt rheological properties changed with the increase of DPF loadings. The complex viscosity |h*| of the composites samples also increased with the increase of DPF loadings. The increased was more significant at higher DPF loadings (i.e. DFC-20). Meanwhile, the Carreau-Yasuda model was found to be well fitted with the experimental data.


2017 ◽  
Vol 14 (2) ◽  
pp. 115 ◽  
Author(s):  
Khaled AlZebdeh ◽  
M. M. Nassar ◽  
M.A. Al-Hadhrami ◽  
O. Al-Aamri ◽  
S. Al-Defaai ◽  
...  

In recent decades, natural fibers have received attention of scientists and researchers due to their ecofriendly characteristics that qualify them as potential reinforcement in polymer composites in place of synthetic fibers.  In this study, an experimental investigation has been conducted to evaluate the effect of orientation of fibers on mechanical properties of a newly developed bio-composite in which date palm fronds (DPF) are embedded as fibers in low-density polyethylene (LDPE) matrix. Three bio-composite sheets with orientations of 0°, 45° and 90°, respectively have been fabricated after the date palm fronds were chemically treated. The fabricated composite specimens are tested under tensile load using Universal Testing Machine (UTM) in accordance with the ASTM D-638 standard. Then, a comparison of the experimental results against analytical results is made to examine the accuracy and agreement between the two. An inconsistency in moduli, as was discovered, is attributed to the adhesion quality between the fibers and surrounding matrix. Output results help to assess the applicability of such class of bio-composites in real-life applications.  The results of tensile strength, Young’s modulus, and elongation at break revealed that date palm fronds can be used as reinforcement material in polymer-based composites for low strength applications.  


: In general the natural fibers are taken out from the sources of animals and plants. In recent days the natural fibers play an important role in engineering applications like automotive, aerospace and marine industries due to abundant availability, less in cost and zero percentage environment harmless in nature. In this paper the investigation of various mechanical properties of hybrid reinforced composite (Palm fiber Basalt S-glass fiber) is been done on the fabricated samples. The different mechanical property includes tensile, hardness and impact tests etc... The fabrication comprises three layers of Palm and Basalt fibers outer laminated by two layers of S-glass fibers using injection molding method. From the various testing and investigation against the test sample it is been concluded that the fibers in the hybrid set took a major role in determining the important mechanical properties. Thus the fibers present in the hybrid composite increases the strength, stiffness and weight ratio of the composite materials. The various forms and structural analysis of the hybrid composite material are processed by using scanning electron microscope for attaining the better results and application basis


Sign in / Sign up

Export Citation Format

Share Document