scholarly journals Nutrient Profile and in vitro Fermentation Characteristics of Flamboyant (Delonix regia) Seeds Subjected to Different Processing Methods for Sustainable Ruminant Production in Humid Tropic

2019 ◽  
pp. 55-60
Author(s):  
Lamidi Akeem Atanda ◽  
Evien E. E. ◽  
Ogunkunle Tajudeen

This study assessed the nutrient profile and in vitro fermentation characteristics of flamboyant (Delonix regia) seeds subjected to different processing methods for sustainable ruminant production in humid tropic. Eight (8) different processing methods formed the experimental treatments, namely T1 (raw/control); T2 (roasted); T3 (soaked in water for 24 hours); T4 (soaked in water for 48 hours); T5 (soaked in rumen liquor for 24 hours); T6 (soaked in rumen liquor for 48 hours); T7 (parboiled for 45 minutes.) and T8 (cooked 45 minutes. The treatments were replicated three times in a Completely Randomized Design (CRD). Data obtained on the nutrient profile and in vitro fermentation characteristics was subjected to a One-way Analysis of Variance (ANOVA) using statistical analysis system (SAS) version 9. The mean was separated using Duncan’s New multiple Range Test (DNMRT). The results showed that there was a significant (P<0.05) effects of processing methods on crude fibre (CF) and calcium (Ca) contents of the processed seeds with the values ranges from 2.97 % in T4 to 4.59% in T8 for crude fibre (CF). Similar (P>0.05) contents was recorded for dry matter (DM), crude protein (CP), ether extract (EE), ash, neutral detergent fibre (NDF), acid detergent fibre (ADF), phosphorous (P) and iron (Fe) content across the experimental treatments, the contents ranges from 88.41 – 89.51%, 20.59 – 21.45%, 2.24 – 3.05%, 4.25 – 4.89% 38.89 – 39.78%, 25.14 – 25.47%, 3.7 – 4.0%, 62.90 – 66.50mg/kg for DM, CP, EE, ash, NDF, ADF, P and Fe content respectively. Significant (P<0.05) different was observed for methane gas (CH4) production, with values ranges from 15.33 – 29.33 (ml). Similar value was observed for fermentation efficiency (FE), short chain fatty acids (SCFA), in vitro organic matter digestibility (IVOMD) and metabolisible energy (ME) across the experimental treatments and the values ranges from 0.37 – 0.67, 0.75 – 1.02 Mmol, 61.92 – 68.61% and 7.38 – 9.55 MJ/kg DM, respectively. Conclusively, irrespective of the processing methods flamboyant seeds had adequate nutrients to meet the nutritional requirements of ruminants except crude fibre (CF) which can be fortified with roughages or fibrous feedstuffs. The in vitro fermentation characteristics showed that the seed has potentials as a feed resource to support ruminant animal production especially in the dry season.

2020 ◽  
Vol 45 (1) ◽  
pp. 309-316
Author(s):  
O. O. Olufayo ◽  
O. O. Falola

The effect of processing on proximate, mineral, anti-nutritional compositions, gasproduction characteristics, methane production, predicted metabolizable energy, organic matter digestibility and short chain fatty acids production of Delonix regia seeds incubated with Pennisetum purpureum were determined. Five treatments (T1: mixture of soaked Delonix regia seed and Pennisetum purpureum; T2: mixture of raw Delonix regia seed and Pennisetum purpureum; T3: mixture of roasted Delonix regia seed and Pennisetum purpureum; T4: mixture of boiled Delonix regia seed and Pennisetum purpureum and T5:100% Pennisetum purpureum which serves as control) were designed. In vitro gas production techniques for 24 hours were used to determine the nutritive value of processed 50% Delonix regia seed and 50% Pennisetum purpureum. The crude protein ranged from 13.38 to 15.71g/100g DM among the treatments while crude fibre was between 20.10 and 21.40g/100g DM, ether extract ranged from 1.90 to 3.12g/100g DM and ash 7.77 to 12.34g/100g DM. Calcium ranged from (2.34 - 3.61%), magnesium ranged (2.90 – 3.48%), sodium (2.05 – 2.91%) and phosphorus (0.88 – 1.12%). It was observed generally that T2 recorded the highest among the treatments while the values obtained for the heat treated seeds were lower than the raw. Oxalates ranged between (0.23% - 0.32%), phytates (0.29 – 0.43%), tannin (0.03 – 0.08%) and saponnin (0.36 – 0.49%). Methane (ml/200mg DM) production indicated T3 (50% roasted Delonix regia seed and 50% Pennisetum purpureum) was highest. The potential gas production 'a+b' ranged from 12.33 to 28.33mL/200mg DM). The highest potential gas production 'a+b' value of 28.33mL/200mg DM was obtained in T1 compared to other dietary treatment. Dry matter digestibility (DMD) ranged between 70.23 – 91.02% while the rate of fermentation was between 0.51 and 1.18ml/hr. The rate of fermentation was directly proportional to dry matter digestibility (DMD); the soaked recorded the highest value. Processing enhanced the nutritional contents of Delonix regia seeds. The result obtained showed that there were significant differences (p<0.05) among the treatments. In conclusion, soaking the seeds of Delonix regia had beter nutritional contents and has the potential for dry season feeding.  


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1386
Author(s):  
Zixin Yang ◽  
Ting Huang ◽  
Ping Li ◽  
Jian Ai ◽  
Jiaxin Liu ◽  
...  

The interactions between cell-wall polysaccharides and polyphenols in the gastrointestinal tract have attracted extensive attention. We hypothesized that dietary fiber modulates the fermentation patterns of cyanidin-3-O-glucoside (C3G) in a fiber-type-dependent manner. In the present study, the effects of four dietary fibers (fructose-oligosaccharides, pectin, β-glucan and arabinoxylan) on the modulation of C3G fermentation patterns were investigated through in vitro fermentation inoculated with human feces. The changes in gas volume, pH, total carbohydrate content, metabolites of C3G, antioxidant activity, and microbial community distribution during in vitro fermentation were analyzed. After 24 h of fermentation, the gas volume and total carbohydrate contents of the four dietary-fiber-supplemented groups respectively increased and decreased to varying degrees. The results showed that the C3G metabolites after in vitro fermentation mainly included cyanidin, protocatechuic acid, 2,4,6-trihydroxybenzoic acid, and 2,4,6-trihydroxybenzaldehyde. Supplementation of dietary fibers changed the proportions of C3G metabolites depending on the structures. Dietary fibers increased the production of short-chain fatty acids and the relative abundance of gut microbiota Bifidobacterium and Lactobacillus, thus potentially maintaining colonic health to a certain extent. In conclusion, the used dietary fibers modulate the fermentation patterns of C3G in a fiber-type-dependent manner.


Nutrients ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 800 ◽  
Author(s):  
Hannah Harris ◽  
Christine Edwards ◽  
Douglas Morrison

Dietary mycoprotein (marketed as QuornTM) has many health benefits, including reductions in energy intake. The majority of studies evaluating mycoprotein focus on the protein content and very few consider the fibre content. Fibre consumption is also associated with decreased energy intake, which is partly attributed to short chain fatty acids (SCFAs) from fibre fermentation by colonic bacteria. To study the SCFA-producing capability of mycoprotein, in vitro batch fermentations were conducted, and SCFA production compared with that from extracted mycoprotein fibre, oligofructose (OF), rhamnose, and laminarin. Mycoprotein and mycoprotein fibre were both fermentable, resulting in a total SCFA production of 24.9 (1.7) and 61.2 (15.7) mmol/L, respectively. OF led to a significantly higher proportion of acetate compared to all other substrates tested (92.6 (2.8)%, p < 0.01). Rhamnose generated the highest proportion of propionate (45.3 (2.0)%, p < 0.01), although mycoprotein and mycoprotein fibre yielded a higher proportion of propionate compared with OF and laminarin. Butyrate proportion was the highest with laminarin (28.0 (10.0)although mycoprotein fibre led to a significantly higher proportion than OF (p < 0.01). Mycoprotein is a valuable source of dietary protein, but its fibre content is also of interest. Further evaluation of the potential roles of the fibre content of mycoprotein is required.


Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1802 ◽  
Author(s):  
Natalie Ahlborn ◽  
Wayne Young ◽  
Jane Mullaney ◽  
Linda M. Samuelsson

While human milk is the optimal food for infants, formulas that contain ruminant milk can have an important role where breastfeeding is not possible. In this regard, cow milk is most commonly used. However, recent years have brought interest in other ruminant milk. While many similarities exist between ruminant milk, there are likely enough compositional differences to promote different effects in the infant. This may include effects on different bacteria in the large bowel, leading to different metabolites in the gut. In this study sheep and cow milk were digested using an in vitro infant digestive model, followed by fecal fermentation using cultures inoculated with fecal material from two infants of one month and five months of age. The effects of the cow and sheep milk on the fecal microbiota, short-chain fatty acids (SCFA), and other metabolites were investigated. Significant differences in microbial, SCFA, and metabolite composition were observed between fermentation of sheep and cow milk using fecal inoculum from a one-month-old infant, but comparatively minimal differences using fecal inoculum from a five-month-old infant. These results show that sheep milk and cow milk can have differential effects on the gut microbiota, while demonstrating the individuality of the gut microbiome.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 273-273
Author(s):  
Zac Traughber ◽  
Fei He ◽  
Jolene Hoke ◽  
Gary Davenport ◽  
Maria R C de Godoy

Abstract In recent years, ancient grains have become popular sources of novel carbohydrates and fiber in pet foods. End-products of microbial fermentation (e.g. short-chain fatty acids) have been shown to be beneficial to the canine microbiome and overall host health. However, limited research exists on the fermentation characteristics of these increasingly popular grains. Thus, the aim of this study was to quantify the fermentative characteristics of select ancient grains in vitro using canine fecal inoculum. Five ancient grains, amaranth (AM), millet white proso (MWP), oat groats (OG), quinoa (QU), red millet (RM), were evaluated and compared to cellulose (CEL) and beet pulp (BP). Triplicate samples of each substrate were initially subjected to partial digestion of starch and protein to mimic in vivo conditions. They were then fermented for 0, 3, 6, 9, and 12 hours. All test substrates had acetate concentrations similar to that of BP after 6, 9, and 12 hrs. Amaranth, OG, and QU had significantly greater butyrate concentrations than BP and CEL after 6 hours, with all test ingredients having significantly higher butyrate concentrations after 9 and 12 hours. pH decreased significantly after 6 hours with further decreases seen after 9 and 12 hours for all substrates, except CEL. Amaranth, MWP, OG, and RM showed significantly greater pH reductions than CEL and BP, with QU performing similarly to BP. Overall, ancient grains show a moderate and beneficial fermentative profile with greater concentrations of butyrate compared with BP; a traditional and moderate fermentable fiber source used in pet foods. Future research should evaluate these substrates and their blends on gastrointestinal health and fecal quality in vivo.


Molecules ◽  
2019 ◽  
Vol 24 (5) ◽  
pp. 828 ◽  
Author(s):  
Ka-Lung Lam ◽  
Kin-Chun Ko ◽  
Xiaojie Li ◽  
Xinxin Ke ◽  
Wai-Yin Cheng ◽  
...  

Barley contains high level of β-1,3-1,4-glucans (BBGs) which can be fermented by microbes and are a potential prebiotic. In the present study, native BBG with low viscosity and a MW of 319 kDa was depolymerized by acid hydrolysis to produce a series of four structurally characterized fragments with MWs ranging from 6–104 kDa. In vitro fermentation of these BBG samples by infant faecal microbiome was evaluated using a validated deep-well plate protocol as parallel miniature bioreactors. Microbial taxa were identified using 16S amplicon sequencing after 40 h of anaerobic fermentation. Bioinformatics analysis including diversity indexes, predicted metagenomic KEGG functions and predicted phenotypes were performed on the sequenced data. Short chain fatty acids and dissolved ammonia were quantified and the SCFAs/NH3 ratio was used to evaluate the eubiosis/dysbiosis potential. Correlation analysis showed that most of the parameters investigated showed a parabolic function instead of a monotonous function with the BBG samples having different MWs. Among the five BBGs, it was concluded that BBG with an intermediate MW of 28 kDa is the most promising candidate to be developed as a novel prebiotic.


2017 ◽  
Vol 8 ◽  
Author(s):  
Adele Costabile ◽  
Triana Bergillos-Meca ◽  
Loretta Landriscina ◽  
Antonio Bevilacqua ◽  
Isidro Gonzalez-Salvador ◽  
...  

Author(s):  
Justin L. Caelson ◽  
Jennifer M. Erickson ◽  
Julie M. Hess ◽  
Trevor J. Gould ◽  
Joanne L. Slavin

Prebiotic dietary fiber supplements are commonly consumed to help meet fiber recommendations and improve gastrointestinal health by stimulating beneficial bacteria and the production of short-chain fatty acids (SCFAs), molecules beneficial to host health. The objective of this research project was to compare potential prebiotic effects and fermentability of five commonly consumed fibers using an in vitro fermentation system measuring changes in fecal microbiota, total gas production and formation of common SCFAs. Fecal donations were collected from three healthy volunteers. Materials analyzed included: pure beta-glucan, Oatwell (commercially available oat-bran containing 22% oat &beta;-glucan), xylooligosaccharides (XOS), WholeFiber (dried chicory root containing inulin, pectin, and hemi/celluloses), and pure inulin. Oatwell had the highest production of propionate at 12 h (4.76 &mu;mol/mL) compared to inulin, WholeFiber and XOS samples (p&lt;0.03). Oatwell&rsquo;s effect was similar to those of the pure beta-glucan samples, both samples promoted the highest mean propionate production at 24 h. XOS resulted in a significant increase in the genus Bifidobacterium after 24 h of fermentation (0 h: 0.67 OTUs; 24 h: 5.22 OTUs; p = 0.038). Inulin and WholeFiber increased the beneficial genus Collinsella, consistent with findings in clinical studies. All analyzed compounds were fermentable and promoted the formation of beneficial SCFAs.


Sign in / Sign up

Export Citation Format

Share Document