scholarly journals Sit-To-Stand and Stand-To-Sit Energetics for Assistive Devices and Robotics Design

2021 ◽  
Author(s):  
Ronnie Joseph Wong

This research presents the development of a Sit-to-Stand and Stand-to-Sit model for regenerative energy recovery with applications in orthoses, protheses and humanoid robot design. Sit-to-Stand and Stand-to-Sit are routine activities and are crucial pre-requisites to walking and running. Determining design parameters for devices which can aid people to perform these activities in an effective manner is a key goal here. MapleSim was used to simulate a 1/10-scale multi-domain model and a nonlinear torque controller was used to control the trajectory profiles of the Sit-to-Stand-to-Sit gait. The model allows accurate simulation of hardware components for use in a future robot. This study addresses the usage in regenerative braking towards sit-to-stand-to-sit and the relationship between Coriolis/centrifugal torque components to inertial and gravitational torque components. This study examines the level of regeneration at ankle, knee and hip. Furthermore, it examines the significance of Coriolis and centrifugal versus inertial and gravitational components of a nonlinear controller in order to determine if these components would be needed in a real robot controller. By applying joint trajectories from human trials it was found that the regenerative effect in the robot model was most significant in the hip and least significant in the ankle. Furthermore, we determined that the Coriolis and centrifugal terms were approximately 1% of the inertial and gravitational terms in the applied nonlinear controller, making them insignificant. We also determined upper bounds for gearing in the joints such that battery autonomy is maximized without encountering motor saturation and inaccurate trajectory following. From these findings, we recommend that robot designs neglect the Coriolis and centrifugal terms and that regenerative hardware be prioritized at the hip.

2021 ◽  
Author(s):  
Ronnie Joseph Wong

This research presents the development of a Sit-to-Stand and Stand-to-Sit model for regenerative energy recovery with applications in orthoses, protheses and humanoid robot design. Sit-to-Stand and Stand-to-Sit are routine activities and are crucial pre-requisites to walking and running. Determining design parameters for devices which can aid people to perform these activities in an effective manner is a key goal here. MapleSim was used to simulate a 1/10-scale multi-domain model and a nonlinear torque controller was used to control the trajectory profiles of the Sit-to-Stand-to-Sit gait. The model allows accurate simulation of hardware components for use in a future robot. This study addresses the usage in regenerative braking towards sit-to-stand-to-sit and the relationship between Coriolis/centrifugal torque components to inertial and gravitational torque components. This study examines the level of regeneration at ankle, knee and hip. Furthermore, it examines the significance of Coriolis and centrifugal versus inertial and gravitational components of a nonlinear controller in order to determine if these components would be needed in a real robot controller. By applying joint trajectories from human trials it was found that the regenerative effect in the robot model was most significant in the hip and least significant in the ankle. Furthermore, we determined that the Coriolis and centrifugal terms were approximately 1% of the inertial and gravitational terms in the applied nonlinear controller, making them insignificant. We also determined upper bounds for gearing in the joints such that battery autonomy is maximized without encountering motor saturation and inaccurate trajectory following. From these findings, we recommend that robot designs neglect the Coriolis and centrifugal terms and that regenerative hardware be prioritized at the hip.


2019 ◽  
Vol 1 (7) ◽  
pp. 10-13
Author(s):  
D. Yu. Ershov ◽  
I. N. Lukyanenko ◽  
E. E. Aman

The article shows the need to develop diagnostic methods for monitoring the quality of lubrication systems, which makes it possible to study the dynamic processes of contacting elements of the friction systems of instrument mechanisms, taking into account roughness parameters, the presence of local surface defects of elements and the bearing capacity of a lubricant. In the present article, a modern diagnostic model has been developed to control the quality of the processes of production and operation of friction systems of instrument assemblies. With the help of the developed model, it becomes possible to establish the relationship of diagnostic and design parameters of the mechanical system, as well as the appearance of possible local defects and lubricant state, which characterize the quality of friction systems used in many mechanical assemblies of the mechanisms of devices. The research results are shown in the form of nomograms to assess the defects of the elements of friction mechanisms of the mechanisms of the devices.


2013 ◽  
Vol 433-435 ◽  
pp. 2277-2281
Author(s):  
Quan Wei Wang ◽  
Ming Hui Wang ◽  
Dong Li ◽  
Dian Mao Wan ◽  
Rong Meng

By analyzing the relationship of the design parameters of NYD contact backstop, the cross-section curve of the wedge block has been discussed as Archimedes spiral, logarithm spiral and arc. Each curve is designed optimally using MATLAB optimization toolbox. The merits and drawbacks of each curve are discussed.


Robotica ◽  
2021 ◽  
pp. 1-19
Author(s):  
Shengjie Wang ◽  
Kun Wang ◽  
Chunsong Zhang ◽  
Jian S Dai

Abstract A kinetostatic approach applied to the design of a backflip strategy for quadruped robots is proposed in this paper. Inspired by legged animals and taking the advantage of the leg workspace, this strategy provides an optimal design idea for the low-cost quadruped robots to achieve self-recovery after overturning. Through kinetostatic and energy analysis, a four-stepped backflip strategy based on the selected rotation axis with minimum energy is proposed, with a process of selection, lifting, rotating, and protection. The kinematic factors that affect the backflip are investigated, along with the relationship between the design parameters of the leg and trunk being analyzed. At the end of this paper, the strategy is validated by a simulation and experiments with a prototype called DRbot, demonstrating that the strategy endows the robot a strong self-recovery ability in various terrains.


Author(s):  
J. Fox

Abstract This paper discusses the relationship between the growth of reliability in the early stages of a product delivery process and Technology Readiness, and describes the importance of ‘ready’ technologies if product launch schedules are to be achieved. Technology Readiness itself is defined and the enablers for it are identified. A process which has been developed is described, and some proposals for tracking and managing progress are made. Finally, the importance of critical design parameters both in the development of technologies and in understanding technology capabilities are described fully.


2011 ◽  
pp. 469-490
Author(s):  
Asim Balci ◽  
Erhan Kumas ◽  
Tunç D. Medeni

Development and extensive use of information and communication technologies has led to important implications for public sectors throughout the world. As a result, in governmental services, citizens have been enjoying better quality services, in an efficient and effective manner. e-government, however, is more related to “government” rather than the “e” as the technical and technological one. The challenge is to use technologies to improve the capacities of government institutions, while improving the quality of life of citizens by redefining the relationship between citizens and their government. Accordingly, this chapter focuses on e-government applications highlighted to reach a more citizen centric e-government in Turkey. Especially, two concepts of e-government, content management system and measuring citizens’ satisfaction from e-services are underlined. Therefore, after giving a theoretical background first on e-government, content management and then measuring e-services satisfaction, new developments towards these concepts are accounted.


2014 ◽  
Vol 505-506 ◽  
pp. 49-52
Author(s):  
Hua Zhao ◽  
Mao Jin Lei ◽  
Shui Gen Peng

Aimed at the feature of expressway subgrade drainage facilities in typical red sandstone areas in Jiangxi province and based on the importance of the structure, damage conditions, service requirements and the current specification requirements related to various types of ditches, the designed repetition period of rainfall and proposed safety depth values for drainage facilities were put forward by considering reasonably the key design parameters to regional drainage facilities. The relationship between prerequisite of discharging sediment in ditches or conduits and minimum longitudinal gradient was discussed. Combined with the characteristics of red sandstone subgrade drainage with high requirements, the design elements of red sandstone area expressway subgrade drainage system were obtained, which can provide beneficial references for the subgrade drainage design in red sandstone areas.


Author(s):  
Austin Curtis ◽  
James Mynderse ◽  
Hamid Vejdani

Abstract Inspired by the agility and maneuverability of running kangaroos, a prototype robot was developed using a reduced order model to constrain the system. Both passive and active models were used to understand the relationship between system parameters and gait performance. A frequency response experiment was performed on the prototype to quantify the relationship between design parameters and system responses. Additionally, preliminary tail controllers were tested. Based on the results of the initial platform, a new robot was designed and built as a platform for the study of three dimensional hopping.


Author(s):  
Kai-Lin Pan ◽  
Yi-Lin Yan ◽  
Bin Zhou

How to integrate the microstructures which are made by various micro manufacturing methods into a functional system or device is the key to the application of MEMS technology. Solder self-assembly is based on surface tension with the properties of “self-organization”, low cost, batch processes and the compatibility with surface mount technology, which makes it be a challenging alternate technique. Solder self-assembly is based on the principle of surface energy minimization of molten solder material. During the process of minimizing the surface energy, surface tension can pull the horizontal hinged or hingeless plate up to a particular angle to achieve the minimal system energy. Finite element method is applied in this paper. MEMS self-assembly three-dimensional dynamic simulation model is developed by SURFACE EVOLVER. First, the model in this paper dynamically simulate the angle change of hinged plate during the process of evolvement of solder; second, the comparisons among the results from the current model and those from analytical two-dimensional model and three-dimensional static model are carried out; third, through Design of Experiments (DoE) with the application of the current model, the influences of design parameters such as pad size, pad geometry, and solder paste volume to the assembly angle are compared and discussed. Through changing the pad size, pad geometry and solder paste volume in SURFACE EVOLVER model, the corresponding final assembly angel from dynamic three-dimensional models are obtained. The relationship between design parameters to the assembly angle is concluded by the application of statistical analyses. The final angle can be controlled more effectively through synthetically optimize these parameters. It can provide effective guidance to the practical manufacturing of MEMS. Further research should focuses on the MEMS self-assembly experiment to intensively understand the relationship between the pad sizes, pad position, solder paste volume, hinge position, lock position and intermetallic compounds and the final assembly angle.


Sign in / Sign up

Export Citation Format

Share Document