scholarly journals Study of impact of sonic energy waves on the rate of precipitation of particles in liquid

Author(s):  
Abdisamed Sheik-Qasim

The effects of sonic energy waves on the settling velocity of small particles in water were studied. A design of experiment (DOE) with five variables (frequency, amplitude, particle diameter, particle density and fluid viscosity) at two or three levels was conducted to obtain the particle settling velocity as the response. The DOE data were analyzed both experimentally and by a statistical multiple regression software. It was concluded that when sound frequency and amplitude in the range of 0 to 500 Hz and 2 to 3 Vrms (root mean square) respectively were applied to plastic particles of three different diameters (2,381 μm, 3,175 μm, and 4,763 μm) and two different densities ... their effects on the particle settling velocity in hydroxypropyl cellulose (HPC) solutions of three different viscosities ... were insignificant. The regression analysis gave an equation that is in good agreement with the experimental data.

2021 ◽  
Author(s):  
Abdisamed Sheik-Qasim

The effects of sonic energy waves on the settling velocity of small particles in water were studied. A design of experiment (DOE) with five variables (frequency, amplitude, particle diameter, particle density and fluid viscosity) at two or three levels was conducted to obtain the particle settling velocity as the response. The DOE data were analyzed both experimentally and by a statistical multiple regression software. It was concluded that when sound frequency and amplitude in the range of 0 to 500 Hz and 2 to 3 Vrms (root mean square) respectively were applied to plastic particles of three different diameters (2,381 μm, 3,175 μm, and 4,763 μm) and two different densities ... their effects on the particle settling velocity in hydroxypropyl cellulose (HPC) solutions of three different viscosities ... were insignificant. The regression analysis gave an equation that is in good agreement with the experimental data.


2021 ◽  
Author(s):  
Silin Jing ◽  
Xianzhi Song ◽  
Zhaopeng Zhu ◽  
Buwen Yu ◽  
Shiming Duan

Abstract Accurate description of cuttings slippage in the gas-liquid phase is of great significance for wellbore cleaning and the control accuracy of bottom hole pressure during MPD. In this study, the wellbore bubble flow environment was simulated by a constant pressure air pump and the transparent wellbore, and the settling characteristics of spherical particles under different gas volume concentrations were recorded and analyzed by highspeed photography. A total of 225 tests were conducted to analyze the influence of particle diameter (1–12mm), particle density (2700–7860kg/m^3), liquid viscosity and bubble volume concentration on particle settling velocity. Gas drag force is defined to quantitatively evaluate the bubble’s resistance to particle slippage. The relationship between bubble drag coefficient and particle Reynolds number is obtained by fitting the experimental results. An explicit settling velocity equation is established by introducing Archimedes number. This explicit equation with an average relative error of only 8.09% can directly predict the terminal settling velocity of the sphere in bubble containing Newtonian fluids. The models for predicting bubble drag coefficient and the terminal settling velocity are valid with particle Reynolds number ranging from 0.05 to 167 and bubble volume concentration ranging from 3.0% to 20.0%. Besides, a trial-and-error procedure and an illustrative example are presented to show how to calculate bubble drag coefficient and settling velocity in bubble containing fluids. The results of this study will provide the theoretical basis for wellbore cleaning and accurate downhole pressure to further improve the performance of MPD in treating gas influx.


1990 ◽  
Vol 258 (1) ◽  
pp. G65-G72 ◽  
Author(s):  
P. J. Sirois ◽  
G. L. Amidon ◽  
J. H. Meyer ◽  
J. Doty ◽  
J. B. Dressman

The influence of particle size, particle density, fluid viscosity, and fluid flow rate on the gastric emptying of nondigestible solids was investigated in five dogs with chronically placed fistulas. Six hundred and fifty particles of 13 different size and density combinations were administered simultaneously with 500 ml of either normal saline or low-, medium-, or high-viscosity polymer solutions. The canine stomach was found to discriminate between these solids on the basis of size and density at all levels of viscosity above saline. The observed patterns of emptying are consistent with the hypothesis that gastric emptying of nondigestible solids is governed in part by hydrodynamics and correlate well with the gastric-emptying coefficient (GEC), a dimensionless grouping of variables that takes the form GEC = (Dpy/Dp) [g(rho f - rho p)Dp2]/[eta (nu)] where [g(rho f - rho p)] is particle buoyancy consisting of fluid (rho f) and particle (rho p) densities and g, the gravitational constant; (Dp) is the particle diameter, (Dpy) the estimated pyloric diameter, eta the fluid viscosity, and (nu) the average linear velocity of fluid exiting the stomach.


2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Urbano Sánchez

Both the estimation of the time that small heavy particles remain inside a 3D vortex and the estimation of the average settling velocity of those particles are some important features in many practical situations. Previous works focused on the case of a horizontal 2D vortex. In this paper, we simulate the dynamics of heavy particles initially situated inside a three-dimensional vortex obtaining a formula for their average settling velocity. In a previous paper we obtained the trajectories of the particles and a formula that provides the time that they need to escape,Te⁎. This work simulates and analyses the escape process, and its main result is the obtaining, from numerical simulation, of a theoretical formulation of the average settling velocityVz⁎and its relationship with the elapsed time. We prove that the permanence time is of the order ofdp⁎-10(withdp⁎particle diameter) and that the average settling velocity is of the order ofTe⁎-1/5for sufficiently small particles. Some applications of the settling velocity formula developed in this work would be the design of mixture devices, the design of particle separation devices, and the prediction of the settling of pollutant particles, seeds, and pollen.


SPE Journal ◽  
2018 ◽  
Vol 23 (05) ◽  
pp. 1689-1705 ◽  
Author(s):  
Sumanth Kumar Arnipally ◽  
Ergun Kuru

Summary The objective of this paper is to determine how fluid shear viscosity and elasticity might influence the particle-settling velocity, and even more so to answer the question of which one of these two rheological properties is more dominant in controlling the particle-settling velocity when viscoelastic drilling fluids are used. The settling velocities of spherical particles (diameters: 1.18, 1.5, 2, and 3 mm) in partially hydrolyzed polyacrylamide (HPAM) polymer fluids were measured using the particle-image-shadow graph (PIS) technique. Two sets of test fluids were formulated by mixing three different grades of HPAM (molecular weights of 500,000, 8 million, and 20 million g/g mol) at polymer concentrations of 0.09, 0.05, and 0.03 wt%. The shear-viscosity and elasticity characteristics of test fluids were determined by performing shear-viscosity and frequency-sweep oscillatory measurements, respectively. The first set of fluids had almost identical shear-viscosity characteristics while showing significantly different elastic properties (quantified in terms of relaxation time). The second set of fluids had similar elastic properties but different shear-viscosity characteristics. In addition, the effect of the particle size on the settling velocities in these test fluids was also investigated. The experimentally measured settling velocities were compared with the values calculated from the Shah et al. (2007) model developed for predicting the settling velocity of spherical particles in power-law (viscoinelastic) fluids as well as the values calculated from the Malhotra and Sharma (2012) correlation developed for settling velocity in shear-thinning viscoelastic fluids in unconfined media. Experimental results showed the following: When the fluids with similar shear-viscosity profiles were used, the settling velocity of spherical particles decreased significantly with the increasing fluid elasticity. The settling-velocity values can be 14 to 50 times overestimated if the effect of the elasticity is not considered. At constant elasticity, the settling velocity of spherical particles also decreased significantly when the fluid shear viscosity was increased. The spherical particle-settling velocity increased pronouncedly as particle diameter increased from 1.18 to 3 mm. However, the magnitude of the increase in settling velocity with the increasing particle diameter is less for the samples with higher elasticity and similar shear-viscosity characteristics. The fluid shear viscosity and the elasticity both seem to have significant effect on the particle-settling velocity. However, from the field operational point of view, fluids with high shear-viscosity values are not always practical to use because the high shear viscosity increases parasitic pressure losses and potentially has a negative effect on the drilling rate. Hence, in such cases increasing the fluid elasticity can help to reduce the particle-settling velocity even at lower shear-viscosity values. By conducting experiments under controlled conditions, we were able to quantify the individual effects of fluid shear viscosity and elasticity on the particle-settling velocity for the first time in drilling literature.


2011 ◽  
Vol 63 (2) ◽  
pp. 240-247 ◽  
Author(s):  
A. Pallarès ◽  
P. François ◽  
M.-N. Pons ◽  
P. Schmitt

Wastewater regulation and treatment is still a major concern in planetary pollution management. Some pollutants, referred to as particulate matter, consist of very small particles just suspended in the water. Various techniques are used for the suspended particles survey. Few of them are able to provide real-time data. The development of new, real time instruments needs the confrontation with real wastewater. Due its instability, the modeling of wastewater in terms of suspended solids was explored. Knowing the description of real wastewater, we tried to produce a synthetic mixture made of basic organic ingredients. A good agreement in terms of turbidity and settling velocity was observed between the artificial wastewater matrix and the real one. The investigation of the individual contribution of the different compounds to the acoustical signal showed a more complex dependance. Thus the modeling of wastewater with reference to turbidity and settling velocity is not sufficient to describe it acoustically. Further studies should lead to a good comparison of the acoustical and turbidity behavior of wastewater.


2018 ◽  
Vol 3 (1) ◽  
pp. 5
Author(s):  
Oktaviani Oktaviani ◽  
Yasuhisa Adachi

In our study, we revisited a previously reported method for evaluating the mixing intensity of uniform colloidal spheres in terms of their collision frequency, with the aim of evaluating the validity of this method in the case of a small stirred vessel equipped with an impeller with four paddles. The rates of the salt-induced rapid coagulation of polystyrene latex (PSL) particles with five different diameters were measured as functions of the rotation rate. The ad-hoc assumption of the linear additivity of the perikinetics and the orthokinetics of the coagulation process was used for the analysis. Our previously proposed equation for the rate of turbulent coagulation as a function of the particle diameter, determined for an end-over-end rotation mixing device, was confirmed to be valid. However, it was found that, for small particles and low-mixing rates, i.e., for low Peclet numbers, the rate of coagulation becomes larger than that predicted on the basis of linear additivity because of the coupling effect of Brownian motion and the fluid flow during turbulent mixing. This increase occurred even though the rate was lowered by the wall effect, which resulted in an inhomogeneous distribution of the mixing intensity.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 268
Author(s):  
Olga V. Soloveva ◽  
Sergei A. Solovev ◽  
Ruzil R. Yafizov

In this work, a study was carried out to compare the filtering and hydrodynamic properties of granular filters with solid spherical granules and spherical granules with modifications in the form of micropores. We used the discrete element method (DEM) to construct the geometry of the filters. Models of granular filters with spherical granules with diameters of 3, 4, and 5 mm, and with porosity values of 0.439, 0.466, and 0.477, respectively, were created. The results of the numerical simulation are in good agreement with the experimental data of other authors. We created models of granular filters containing micropores with different porosity values (0.158–0.366) in order to study the micropores’ effect on the aerosol motion. The study showed that micropores contribute to a decrease in hydrodynamic resistance and an increase in particle deposition efficiency. There is also a maximum limiting value of the granule microporosity for a given aerosol particle diameter when a further increase in microporosity leads to a decrease in the deposition efficiency.


2011 ◽  
Vol 24 (6) ◽  
pp. 777-788 ◽  
Author(s):  
J.Z. Liang

The structure of the interlayer between matrix and inclusions affect directly the mechanical and physical properties of inorganic particulate-filled polymer composites. The interlayer thickness is an important parameter for characterization of the interfacial structure. The effects of the interlayer between the filler particles and matrix on the mechanical properties of polymer composites were analyzed in this article. On the basis of a simplified model of interlayer, an expression for estimating the interlayer thickness ([Formula: see text]) was proposed. In addition, the relationship between the [Formula: see text] and the particle size and its concentration was discussed. The results showed that the calculations of the [Formula: see text] and thickness/particle diameter ratio ([Formula: see text]) increased nonlinearly with an increase of the volume fraction of the inclusions. Moreover, the predictions of [Formula: see text] and the relevant data reported in literature were compared, and good agreement was found between them.


1995 ◽  
Vol 73 (10) ◽  
pp. 1676-1682 ◽  
Author(s):  
Galina A. Semenova

Specific temperature, storage times, and medium composition enable initiation of regular arrays of intramembranous particles on the exoplasmic fracture face during prolonged storage of isolated chloroplasts at 4 °C, producing about 2 – 10 regular arrays with 2 – 30 particles in each array, with a period of about 36 nm, oriented in 1 – 4 directions. The particle sizes do not change throughout the time of storage (1 – 4 weeks). The second type of particle regularity arises during prolonged storage of chloroplasts in greater than 1 M sucrose at −18 °C. Rounded areas of small particles tightly packed into paracrystalline arrays are found among less densely packed particles. The density of small particles is 4700 particles/μm2, and the mean size is 11 nm, whereas the particle density of the background is 1600 particles/μm2 with a mean particle size of 13 nm compared with 1200 particles/μm2 and mean size 16 nm in fresh chloroplasts. Based on the reduction of particle sizes and manner of packing on the fracture face, it is proposed that the small particles are a light-harvesting complex, separate from photosystem II and aggregated into paracrystalline arrays. The thylakoid lipids may participate in formation of particle regularity. Key words: thylakoid membrane, freeze fracture, particle regularity, low temperatures.


Sign in / Sign up

Export Citation Format

Share Document