scholarly journals A Virtual Reality Investigation Of Spontaneous Navigation Strategies And Spatial Memory Performance In Schizophrenia

2021 ◽  
Author(s):  
Leanne K. Wilkins

There is strong evidence that schizophrenia (SCZ) patients perform poorly on spatial memory tasks. We investigated whether these deficits were associated with subdivisions of spatial memory (locale/cognitive map and taxon/response) or whether these deficits represented a general cognitive decline. This study investigated the types of spontaneous navigation strategies used by individuals living with SCZ to solve the 4 on 8 task. It was predicted that SCZ participants who spontaneously chose a spatial strategy would have the longest latencies and make the most errors. Four of five measures of latency and errors produced a medium magnitude effect size (

2021 ◽  
Author(s):  
Leanne K. Wilkins

There is strong evidence that schizophrenia (SCZ) patients perform poorly on spatial memory tasks. We investigated whether these deficits were associated with subdivisions of spatial memory (locale/cognitive map and taxon/response) or whether these deficits represented a general cognitive decline. This study investigated the types of spontaneous navigation strategies used by individuals living with SCZ to solve the 4 on 8 task. It was predicted that SCZ participants who spontaneously chose a spatial strategy would have the longest latencies and make the most errors. Four of five measures of latency and errors produced a medium magnitude effect size (


2021 ◽  
Vol 4 (Supplement_1) ◽  
pp. 288-289
Author(s):  
N Kraimi ◽  
G De Palma ◽  
J Lu ◽  
D Bowdish ◽  
E Verdu ◽  
...  

Abstract Background Age-associated deterioration of cognitive function and memory capacity occur in a variety of mammals, from humans to rodents. For example, significant memory deficits have been reported in conventionally raised (SPF) old mice compared to conventionally raised young mice submitted to a spatial memory task (Prevot et al., Mol Neuropsychiatry 2019). Microbiota to brain signaling is now well established in mice, but the extent to which this influences age-related memory decline is unknown. Aims Our project aims to determine whether the intestinal microbiota contributes to age-related changes in brain function. We address the hypothesis that age-related cognitive decline is attenuated in the absence of the intestinal microbiota. Methods We studied locomotor behavior and spatial memory performance in young germ-free (GF) mice (2–3 months of age, n=24) and senescent GF mice (13–27 months old, n=22) maintained in axenic conditions, and compared them to conventionally raised (SPF) mice. We used the Y-maze test based on a spontaneous alternations task to assess cognition, with alternation rate as a proxy of spatial working memory performance. The locomotor activity was measured using the open-field test. Results GF old mice traveled less distance (458.9 cm) than GF young mice (875.7 cm, p < 0.001) but these differences in locomotor activity did not influence spatial memory performance. Indeed, both GF old and GF young mice had an identical alternation rate of 73.3% (p > 0.05). This contrasted with the memory impairment found in old SPF mice that displayed lower alternation rate of 58.3%, compared to that found in young SPF mice (76.2%, p = 0.13). Conclusions We conclude that the absence of age-related memory decline in germ-free mice is consistent with a role for the microbiota in the cognitive decline associated with aging, likely through action on the immune system, well documented in SPF mice (Thevaranjan et al., Cell Host & Microbe 2017). We propose that novel microbiota-targeted therapeutic strategies may delay or prevent the cognitive decline of aging. Funding Agencies CIHRBalsam Family Foundation


2020 ◽  
Vol 10 (8) ◽  
pp. 552
Author(s):  
Joaquín Castillo Escamilla ◽  
José Javier Fernández Castro ◽  
Shishir Baliyan ◽  
Juan José Ortells-Pareja ◽  
Juan José Ortells Rodríguez ◽  
...  

Traditionally, the medial temporal lobe has been considered a key brain region for spatial memory. Nevertheless, executive functions, such as working memory, also play an important role in complex behaviors, such as spatial navigation. Thus, the main goal of this study is to clarify the relationship between working memory capacity and spatial memory performance. Spatial memory was assessed using a virtual reality-based procedure, the Boxes Room task, and the visual working memory with the computer-based Change Localization Task. One hundred and twenty-three (n = 123) participants took part in this study. Analysis of Covariance (ANCOVA) revealed a statistically significant relationship between working memory capacity and spatial abilities. Thereafter, two subgroups n = 60, were formed according to their performance in the working memory task (1st and 4th quartiles, n = 30 each). Results demonstrate that participants with high working memory capacity committed fewer mistakes in the spatial task compared to the low working memory capacity group. Both groups improved their performance through repeated trials of the spatial task, thus showing that they could learn spatial layouts independent of their working memory capacity. In conclusion, these findings support that spatial memory performance is directly related to working memory skills. This could be relevant for spatial memory assessment in brain lesioned patients.


2021 ◽  
Author(s):  
Hamdi Ben Abdessalem ◽  
Claude Frasson

Subjective cognitive decline is an early state of Alzheimer’s Disease which affects almost 10 million people every year. It results from negative emotions such as frustration which are more present than healthy adults. For this reason, our work focuses on relaxing subjective cognitive decline patients using virtual reality environments to improve their memory performance. We proposed in our previous work a neurofeedback approach which adapts the virtual environment to each patient according to their emotions using a Neural Agent. We found that the Neural Agent can adapt the environment to each participant but have limitations. This work is a continuation of our approach in which we propose a Limbic Agent able to monitor the interactions between the Neural Agent and patients’ emotional reactions, learn from these interactions, and modify the Neural Agent in order to enhance the adaptation to each patient with an Intelligent Cognitive Control System. Our goal is to create a system able to support the Limbic System which is the main area in charge of controlling emotions and creating memory in the human brain. We used data collected form our previous work to train the Limbic Agent and results showed that the agent is capable of modifying the weight of existing rules, generating new intervention rules, and predicting if they will work or not.


Author(s):  
Carmen Noguera ◽  
Dolores Carmona ◽  
Adrián Rueda ◽  
Rubén Fernández ◽  
José Manuel Cimadevilla

Background: Aging is generally considered to be related to physical and cognitive decline. This is especially prominent in the frontal and parietal lobes, underlying executive functions and spatial memory, respectively. This process could be successfully mitigated in certain ways, such as through the practice of aerobic sports. With regard to this, dancing integrates physical exercise with music and involves retrieval of complex sequences of steps and movements creating choreographies. Methods: In this study, we compared 26 non-professional salsa dancers (mean age 55.3 years, age-range 49–70 years) with 20 non-dancers (mean age 57.6 years, age-range 49–70 years) by assessing two variables: their executive functions and spatial memory performance. Results: results showed that dancers scored better that non-dancers in our tests, outperforming controls in executive functions-related tasks. Groups did not differ in spatial memory performance. Conclusions: This work suggests that dancing can be a valid way of slowing down the natural age-related cognitive decline. A major limitation of this study is the lack of fitness assessment in both groups. In addition, since dancing combines multiple factors like social contact, aerobic exercise, cognitive work with rhythms, and music, it is difficult to determine the weight of each variable.


2019 ◽  
Author(s):  
Shachar Maidenbaum ◽  
Ansh Patel ◽  
Isaiah Garlin ◽  
Josh Jacobs

AbstractSpatial memory is a crucial part of our lives. Spatial memory research and rehabilitation in humans is typically performed either in real environments, which is challenging practically, or in Virtual Reality (VR), which has limited realism. Here we explored the use of Augmented Reality (AR) for studying spatial cognition. AR combines the best features of real and VR paradigms by allowing subjects to learn spatial information in a flexible fashion while walking through a real-world environment. To compare these methods, we had subjects perform the same spatial memory task in VR and AR settings. Although subjects showed good performance in both, subjects reported that the AR task version was significantly easier, more immersive, and more fun than VR. Importantly, memory performance was significantly better in AR compared to VR. Our findings validate that integrating AR can lead to improved techniques for spatial memory research and suggest their potential for rehabilitation.HighlightsWe built matching spatial memory tasks in VR and ARSubjectively, subjects find the AR easier, more immersive and more funObjectively, subjects are significantly more accurate in AR compared to VRPointing based tasks did not fully show the same advantagesOnly AR walking significantly correlated with SBSoD, suggesting mobile AR better captures more natural spatial performance


2006 ◽  
Vol 11 (4) ◽  
pp. 304-311 ◽  
Author(s):  
Lars-Göran Nilsson

This paper presents four domains of markers that have been found to predict later cognitive impairment and neurodegenerative disease. These four domains are (1) data patterns of memory performance, (2) cardiovascular factors, (3) genetic markers, and (4) brain activity. The critical features of each domain are illustrated with data from the longitudinal Betula Study on memory, aging, and health ( Nilsson et al., 1997 ; Nilsson et al., 2004 ). Up to now, early signs regarding these domains have been examined one by one and it has been found that they are associated with later cognitive impairment and neurodegenerative disease. However, it was also found that each marker accounts for only a very small part of the total variance, implying that single markers should not be used as predictors for cognitive decline or neurodegenerative disease. It is discussed whether modeling and simulations should be used as tools to combine markers at different levels to increase the amount of explained variance.


2021 ◽  
Vol 22 (14) ◽  
pp. 7713
Author(s):  
Alyssa Tidmore ◽  
Sucharita M. Dutta ◽  
Arriyam S. Fesshaye ◽  
William K. Russell ◽  
Vania D. Duncan ◽  
...  

Exposure of rodents to <20 cGy Space Radiation (SR) impairs performance in several hippocampus-dependent cognitive tasks, including spatial memory. However, there is considerable inter-individual susceptibility to develop SR-induced spatial memory impairment. In this study, a robust label-free mass spectrometry (MS)-based unbiased proteomic profiling approach was used to characterize the composition of the hippocampal proteome in adult male Wistar rats exposed to 15 cGy of 1 GeV/n 48Ti and their sham counterparts. Unique protein signatures were identified in the hippocampal proteome of: (1) sham rats, (2) Ti-exposed rats, (3) Ti-exposed rats that had sham-like spatial memory performance, and (4) Ti-exposed rats that impaired spatial memory performance. Approximately 14% (159) of the proteins detected in hippocampal proteome of sham rats were not detected in the Ti-exposed rats. We explored the possibility that the loss of the Sham-only proteins may arise as a result of SR-induced changes in protein homeostasis. SR-exposure was associated with a switch towards increased pro-ubiquitination proteins from that seen in Sham. These data suggest that the role of the ubiquitin-proteome system as a determinant of SR-induced neurocognitive deficits needs to be more thoroughly investigated.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Stephanie Langella ◽  
◽  
Muhammad Usman Sadiq ◽  
Peter J. Mucha ◽  
Kelly S. Giovanello ◽  
...  

AbstractWith an increasing prevalence of mild cognitive impairment (MCI) and Alzheimer’s disease (AD) in response to an aging population, it is critical to identify and understand neuroprotective mechanisms against cognitive decline. One potential mechanism is redundancy: the existence of duplicate elements within a system that provide alternative functionality in case of failure. As the hippocampus is one of the earliest sites affected by AD pathology, we hypothesized that functional hippocampal redundancy is protective against cognitive decline. We compared hippocampal functional redundancy derived from resting-state functional MRI networks in cognitively normal older adults, with individuals with early and late MCI, as well as the relationship between redundancy and cognition. Posterior hippocampal redundancy was reduced between cognitively normal and MCI groups, plateauing across early and late MCI. Higher hippocampal redundancy was related to better memory performance only for cognitively normal individuals. Critically, functional hippocampal redundancy did not come at the expense of network efficiency. Our results provide support that hippocampal redundancy protects against cognitive decline in aging.


Sign in / Sign up

Export Citation Format

Share Document