scholarly journals Cost minimization of algorithms for scheduling parallel, single-threaded, heterogeneous, speed-scalable processors

Author(s):  
Rashid Khogali

We synthesize online scheduling algorithms to optimally assign a set of arriving heterogeneous tasks to heterogeneous speed-scalable processors under the single threaded computing architecture. By using dynamic speed-scaling, where each processor's speed is able to dynamically change within hardware and software processing constraints, the goal of our algorithms is to minimize the total financial cost (in dollars) of response time and energy consumption (TCRTEC) of the tasks. In our work, the processors are heterogeneous in that they may differ in their hardware specifications with respect to maximum processing rate, power function parameters and energy sources. Tasks are heterogeneous in terms of computation volume, memory and minimum processing requirements. We also consider that the unit price of response time for each task is heterogeneous because the user may be willing to pay higher/lower unit prices for certain tasks, thereby increasing/decreasing their optimum processing rates. We model the overhead loading time incurred when a task is loaded by a given processor prior to its execution and assume it to be heterogeneous as well. Under the single threaded, single buffered computing architecture, we synthesize the SBDPP algorithm and its two other versions. Its first two versions allow the user to specify the unit price of energy and response time for executing each arriving task. The algorithm's second version extends the functionality of the first by allowing the user or the OS of the computing device to further modify a task's unit price of time or energy in order to achieve a linearly controlled operation point that lies somewhere in the economy-performance mode continuum of a task's execution. The algorithm's third version operates exclusively on the latter. We briefly extend the algorithm and its versions to consider migration, where an unfinished task is paused and resumed on another processor. The SBDPP algorithm is qualitatively compared against its two other versions. The SBDPP dispatcher is analytically shown to perform better than the well known Round Robin dispatcher in terms of the TCRTEC performance metric. Through simulations we deduce a relationship between the arrival rate of tasks, number of processors and response time of tasks. Under the Single threaded, multi-buffered computing architecture we have four contributions that constitute the SMBSPP algorithm. First, we propose a novel task dispatching strategy for assigning the tasks to the processors. Second, we propose a novel preemptive service discipline called Smallest remaining Computation Volume Per unit Price of response Time (SCVPPT) to schedule the tasks on the assigned processor. Third, we propose a dynamic speed-scaling function that explicitly determines the optimum processing rate of each task. Most of the simulations consider both stochastic and deterministic traffic conditions. Our simulation results show that SCVPPT outperforms the two known service disciplines, Shortest Remaining Processing Time (SRPT) and the First Come First Serve (FCFS), in terms of minimizing the TCRTEC performance metric. The results also show that the algorithm's dispatcher drastically outperforms the well known Round Robin dispatcher with cost savings exceeding 100% even when the processors are mildly heterogeneous. Finally, analytical and simulation results show that our speed scaling function performs better than a comparable speed scaling function in current literature. Under a fixed budget of energy, we synthesize the SMBAD algorithm which uses the micro-economic laws of Supply and Demand (LSD) to heuristically adjust the unit price of energy in order to extend battery life and execute more than 50% of tasks on a single processor (under the single threaded, multi buffered computing architecture). By extending all our multiprocessor algorithms to factor independent (battery) energy sources that is associated with each processor, we analytically show that load balancing effects are induced on hetergeneous parallel processors. This happens when the unit price of energy is adjusted by the battery level of each processor in accordance with LSD. Furthermore, we show that a variation of this load balancing effect also occurs when the heterogeneous processors use a single battery as long as they operate at unconstrained processing rates.

2021 ◽  
Author(s):  
Rashid Khogali

We synthesize online scheduling algorithms to optimally assign a set of arriving heterogeneous tasks to heterogeneous speed-scalable processors under the single threaded computing architecture. By using dynamic speed-scaling, where each processor's speed is able to dynamically change within hardware and software processing constraints, the goal of our algorithms is to minimize the total financial cost (in dollars) of response time and energy consumption (TCRTEC) of the tasks. In our work, the processors are heterogeneous in that they may differ in their hardware specifications with respect to maximum processing rate, power function parameters and energy sources. Tasks are heterogeneous in terms of computation volume, memory and minimum processing requirements. We also consider that the unit price of response time for each task is heterogeneous because the user may be willing to pay higher/lower unit prices for certain tasks, thereby increasing/decreasing their optimum processing rates. We model the overhead loading time incurred when a task is loaded by a given processor prior to its execution and assume it to be heterogeneous as well. Under the single threaded, single buffered computing architecture, we synthesize the SBDPP algorithm and its two other versions. Its first two versions allow the user to specify the unit price of energy and response time for executing each arriving task. The algorithm's second version extends the functionality of the first by allowing the user or the OS of the computing device to further modify a task's unit price of time or energy in order to achieve a linearly controlled operation point that lies somewhere in the economy-performance mode continuum of a task's execution. The algorithm's third version operates exclusively on the latter. We briefly extend the algorithm and its versions to consider migration, where an unfinished task is paused and resumed on another processor. The SBDPP algorithm is qualitatively compared against its two other versions. The SBDPP dispatcher is analytically shown to perform better than the well known Round Robin dispatcher in terms of the TCRTEC performance metric. Through simulations we deduce a relationship between the arrival rate of tasks, number of processors and response time of tasks. Under the Single threaded, multi-buffered computing architecture we have four contributions that constitute the SMBSPP algorithm. First, we propose a novel task dispatching strategy for assigning the tasks to the processors. Second, we propose a novel preemptive service discipline called Smallest remaining Computation Volume Per unit Price of response Time (SCVPPT) to schedule the tasks on the assigned processor. Third, we propose a dynamic speed-scaling function that explicitly determines the optimum processing rate of each task. Most of the simulations consider both stochastic and deterministic traffic conditions. Our simulation results show that SCVPPT outperforms the two known service disciplines, Shortest Remaining Processing Time (SRPT) and the First Come First Serve (FCFS), in terms of minimizing the TCRTEC performance metric. The results also show that the algorithm's dispatcher drastically outperforms the well known Round Robin dispatcher with cost savings exceeding 100% even when the processors are mildly heterogeneous. Finally, analytical and simulation results show that our speed scaling function performs better than a comparable speed scaling function in current literature. Under a fixed budget of energy, we synthesize the SMBAD algorithm which uses the micro-economic laws of Supply and Demand (LSD) to heuristically adjust the unit price of energy in order to extend battery life and execute more than 50% of tasks on a single processor (under the single threaded, multi buffered computing architecture). By extending all our multiprocessor algorithms to factor independent (battery) energy sources that is associated with each processor, we analytically show that load balancing effects are induced on hetergeneous parallel processors. This happens when the unit price of energy is adjusted by the battery level of each processor in accordance with LSD. Furthermore, we show that a variation of this load balancing effect also occurs when the heterogeneous processors use a single battery as long as they operate at unconstrained processing rates.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4419
Author(s):  
Ting Li ◽  
Haiping Shang ◽  
Weibing Wang

A pressure sensor in the range of 0–120 MPa with a square diaphragm was designed and fabricated, which was isolated by the oil-filled package. The nonlinearity of the device without circuit compensation is better than 0.4%, and the accuracy is 0.43%. This sensor model was simulated by ANSYS software. Based on this model, we simulated the output voltage and nonlinearity when piezoresistors locations change. The simulation results showed that as the stress of the longitudinal resistor (RL) was increased compared to the transverse resistor (RT), the nonlinear error of the pressure sensor would first decrease to about 0 and then increase. The theoretical calculation and mathematical fitting were given to this phenomenon. Based on this discovery, a method for optimizing the nonlinearity of high-pressure sensors while ensuring the maximum sensitivity was proposed. In the simulation, the output of the optimized model had a significant improvement over the original model, and the nonlinear error significantly decreased from 0.106% to 0.0000713%.


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110112
Author(s):  
Yan Lou ◽  
Kewei Chen ◽  
Xiangwei Zhou ◽  
Yanfeng Feng

A novel Injection-rolling Nozzle (IRN) in an imprint system with continuous injection direct rolling (CIDR) for ultra-thin microstructure polymer guide light plates was developed to achieve uniform flow velocity and temperature at the width direction of the cavity exit. A novel IRN cavity was designed. There are eight of feature parameters of cavity were optimized by orthogonal experiments and numerical simulation. Results show that the flow velocity at the width direction of the IRN outlet can reach uniformity, which is far better than that of traditional cavity. The smallest flow velocity difference and temperature difference was 0.6 mm/s and 0.24 K, respectively. The superior performance of the IRN was verified through a CIDR experiment. Several 0.35-mm thick, 340-mm wide, and 10-m long microstructural Polymethyl Methacrylate (PMMA) guide light plates were manufactured. The average filling rates of the microgrooves with the aspect ratio 1:3 reached above 93%. The average light transmittance is 88%.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 323
Author(s):  
Marwa A. Abdelaal ◽  
Gamal A. Ebrahim ◽  
Wagdy R. Anis

The widespread adoption of network function virtualization (NFV) leads to providing network services through a chain of virtual network functions (VNFs). This architecture is called service function chain (SFC), which can be hosted on top of commodity servers and switches located at the cloud. Meanwhile, software-defined networking (SDN) can be utilized to manage VNFs to handle traffic flows through SFC. One of the most critical issues that needs to be addressed in NFV is VNF placement that optimizes physical link bandwidth consumption. Moreover, deploying SFCs enables service providers to consider different goals, such as minimizing the overall cost and service response time. In this paper, a novel approach for the VNF placement problem for SFCs, called virtual network functions and their replica placement (VNFRP), is introduced. It tries to achieve load balancing over the core links while considering multiple resource constraints. Hence, the VNF placement problem is first formulated as an integer linear programming (ILP) optimization problem, aiming to minimize link bandwidth consumption, energy consumption, and SFC placement cost. Then, a heuristic algorithm is proposed to find a near-optimal solution for this optimization problem. Simulation studies are conducted to evaluate the performance of the proposed approach. The simulation results show that VNFRP can significantly improve load balancing by 80% when the number of replicas is increased. Additionally, VNFRP provides more than a 54% reduction in network energy consumption. Furthermore, it can efficiently reduce the SFC placement cost by more than 67%. Moreover, with the advantages of a fast response time and rapid convergence, VNFRP can be considered as a scalable solution for large networking environments.


2012 ◽  
Vol 501 ◽  
pp. 151-155
Author(s):  
Yong Liu ◽  
Ge Zhang ◽  
Hua Yan ◽  
Yu Mei Ding ◽  
Wei Min Yang

In this article, three kinds of belt named B, C and D type are invented, then their main performance are compared with the other two kinds of belt structures introduced in previous papers. Simulation results showed that B and D-type belts are better than the other three. Comparatively the latter needs less material, its molding process is easier, and the tire body is lighter than B type tire, so in general it can be considered that D-type belt is the best among the five kinds of belt structures.


1995 ◽  
Vol 06 (05) ◽  
pp. 681-692
Author(s):  
R. ODORICO

A Neural Network trigger for [Formula: see text] events based on the SVT microvertex processor of experiment CDF at Fermilab is presented. It exploits correlations among track impact parameters and azimuths calculated by the SVT from the SVX microvertex detector data. The neural trigger is meant for implementation on the systolic Siemens microprocessor MA16, which has already been used in a neural-network trigger for experiment WA92 at CERN. A suitable set of input variables is found, which allows a viable solution for the preprocessing task using standard electronic components. The response time of the neural-network stage of the trigger, including preprocessing, can be estimated ~10 μs. Its precise value depends on the quantitative specifications of the output signals of the SVT, which is still in development. The performance of the neural-network trigger is found to be significantly better than that of a conventional trigger exclusively based on impact parameter data.


2018 ◽  
Vol 22 (8) ◽  
pp. 4425-4447 ◽  
Author(s):  
Manuel Antonetti ◽  
Massimiliano Zappa

Abstract. Both modellers and experimentalists agree that using expert knowledge can improve the realism of conceptual hydrological models. However, their use of expert knowledge differs for each step in the modelling procedure, which involves hydrologically mapping the dominant runoff processes (DRPs) occurring on a given catchment, parameterising these processes within a model, and allocating its parameters. Modellers generally use very simplified mapping approaches, applying their knowledge in constraining the model by defining parameter and process relational rules. In contrast, experimentalists usually prefer to invest all their detailed and qualitative knowledge about processes in obtaining as realistic spatial distribution of DRPs as possible, and in defining narrow value ranges for each model parameter.Runoff simulations are affected by equifinality and numerous other uncertainty sources, which challenge the assumption that the more expert knowledge is used, the better will be the results obtained. To test for the extent to which expert knowledge can improve simulation results under uncertainty, we therefore applied a total of 60 modelling chain combinations forced by five rainfall datasets of increasing accuracy to four nested catchments in the Swiss Pre-Alps. These datasets include hourly precipitation data from automatic stations interpolated with Thiessen polygons and with the inverse distance weighting (IDW) method, as well as different spatial aggregations of Combiprecip, a combination between ground measurements and radar quantitative estimations of precipitation. To map the spatial distribution of the DRPs, three mapping approaches with different levels of involvement of expert knowledge were used to derive so-called process maps. Finally, both a typical modellers' top-down set-up relying on parameter and process constraints and an experimentalists' set-up based on bottom-up thinking and on field expertise were implemented using a newly developed process-based runoff generation module (RGM-PRO). To quantify the uncertainty originating from forcing data, process maps, model parameterisation, and parameter allocation strategy, an analysis of variance (ANOVA) was performed.The simulation results showed that (i) the modelling chains based on the most complex process maps performed slightly better than those based on less expert knowledge; (ii) the bottom-up set-up performed better than the top-down one when simulating short-duration events, but similarly to the top-down set-up when simulating long-duration events; (iii) the differences in performance arising from the different forcing data were due to compensation effects; and (iv) the bottom-up set-up can help identify uncertainty sources, but is prone to overconfidence problems, whereas the top-down set-up seems to accommodate uncertainties in the input data best. Overall, modellers' and experimentalists' concept of model realism differ. This means that the level of detail a model should have to accurately reproduce the DRPs expected must be agreed in advance.


2014 ◽  
Vol 511-512 ◽  
pp. 561-564
Author(s):  
Ji Bo Li ◽  
Wei Ning Ni ◽  
San Guo Li ◽  
Zu Yang Zhu

Pressure resistant performance of Measure While Drilling (MWD) microchip tracer to withstand the harsh downhole environment is one of the key issues of normal working. Therefore, it is an effective way to analyze pressure resistant performance of the tracer in the design phase. Compressive strength of the tracer was studied based on finite element method. Considering downhole complexity and working conditions during the processing of tracer roundness, material non-uniformity and other factors. In this study, researchers took sub-proportion failure criterion to determine the failure of tracer. Simulation results of two structures, with pin and without pin, show that both structures met the requirement of downhole compressive strength, and the structure with pin was better than the structure without pin. This study provides basis for downhole application of microchip tracers.


2015 ◽  
Vol 787 ◽  
pp. 893-898
Author(s):  
Suneetha Racharla ◽  
K. Rajan ◽  
K.R. Senthil Kumar

Recently renewable energy sources have gained much attention as a clean energy. But the main problem occurs with the varying nature with the day and season. Aim of this paper is to conserve the energy, of the natural resources. For solar energy resource, the output induced in the photovoltaic (PV) modules depends on solar radiation and temperature of the solar cells. To maximize the efficiency of the system it is necessary to track the path of sun in order to keep the panel perpendicular to the sun. This paper proposes the design and construction of a microcontroller-based solar panel tracking system. The fuzzy controller aims at maximizing the efficiency of PV panel by focusing the sunlight to incident perpendicularly to the panel. The system consists of a PV panel which can be operated with the help of DC motor, four LED sensors placed in different positions and a fuzzy controller which takes the input from sensors and gives output speed to motor. A prototype is fabricated to test the results and compared with the simulation results. The results show the improved performance by using a tracking system


Sign in / Sign up

Export Citation Format

Share Document