scholarly journals Impact of heat stress on the fitness outcomes of symbiotic infection in aphids: a meta-analysis

2021 ◽  
Author(s):  
Kévin Tougeron ◽  
Corentin Iltis

Beneficial microorganisms shape the evolutionary trajectories of their hosts, facilitating or constraining the colonization of new ecological niches. One convincing example entails the responses of insect-microbe associations to rising temperatures. Indeed, the insect resilience to stressful high temperatures depends on the genetic identity of the obligate symbiont and the presence of heat protective facultative symbionts. With accumulating empirical evidence, there is a need of integrative studies to draw general patterns about the thermal sensitivity of insect-microbe associations, from an eco-evolutionary perspective. Focusing on aphid-bacteria mutualisms, this meta-analysis aims to quantify the context-dependent impacts of symbionts on host phenotype in benign or stressful heat conditions, across fitness traits, types of heat stress, and symbiont species. We found that warming lowered the benefits (parasitoid resistance) and costs (development, fecundity) of infection by facultative symbionts, which was overall mostly beneficial to the aphids under short-term heat stress (heat shock) rather than extended warming. Heat tolerant genotypes of the obligate symbiont Buchnera aphidicola and some facultative symbionts (Rickettsia sp., Serratia symbiotica) improved or maintained aphid fitness under heat stress. As phytophagous insects are central to terrestrial ecosystems, symbiont-mediated responses to increasing mean temperatures and frequency of heat waves in the context of climate change are key elements that may have cascading effects on food webs and there is an urgent need to continue accumulating data on other models. We discuss the implications of these conclusions for the general understanding of the cost-benefits balance and eco-evolutionary dynamics of insect-microbe associations faced with climate change.

2017 ◽  
Vol 68 (12) ◽  
pp. 1158 ◽  
Author(s):  
J. Chang-Fung-Martel ◽  
M. T. Harrison ◽  
R. Rawnsley ◽  
A. P. Smith ◽  
H. Meinke

Extreme climatic events such as heat waves, extreme rainfall and prolonged dry periods are a significant challenge to the productivity and profitability of dairy systems. Despite projections of more frequent extreme events, increasing temperatures and reduced precipitation, studies on the impact of these extreme climatic events on pasture-based dairy systems remain uncommon. The Intergovernmental Panel on Climate Change has estimated Australia to be one of the most negatively impacted regions with additional studies estimating Australian production losses of around 16% in the agricultural sector and 9–19% between the present and 2050 in the south-eastern dairy regions of Australia due to climate change. Here we review the literature on the impact of climate change on pasture-based dairy systems with particular focus on extreme climatic events. We provide an insight into current methods for assessing and quantifying heat stress highlighting the impacts on pastures and animals including the associated potential productivity losses and conclude by outlining potential adaptation strategies for improving the resilience of the whole-farm systems to climate change. Adapting milking routines, calving systems and the introduction of heat stress tolerant dairy cow breeds are some proposed strategies. Changes in pasture production would also include alternative pasture species better adapted to climate extremes such as heat waves and prolonged periods of water deficit. In order to develop effective adaptation strategies we also need to focus on issues such as water availability, animal health and associated energy costs.


2019 ◽  
Vol 76 (Suppl 1) ◽  
pp. A73.2-A73
Author(s):  
Matthias Otto ◽  
Tord Kjellstrom ◽  
Bruno Lemke

Exposure to extreme heat negatively affects occupational health. Heat stress indices like Wet Bulb Globe Temperature (WBGT) combine temperature and humidity and allow quantifying the climatic impact on human physiology and clinical health. Multi-day periods of high heat stress (aka. heat waves) affect occupational health and productivity independently from the absolute temperature levels; e.g. well-documented heat-waves in Europe caused disruption, hospitalisations and deaths (2003 French heat wave: more than 1000 extra deaths, 15–65 years, mainly men) even though the temperatures were within the normal range of hotter countries.Climate change is likely to increase frequency and severity of periods of high heat stress. However, current global grid-cell based climate models are not designed to predict heat waves, neither in terms of severity or frequency.By analysing 37 years of historic daily heat index data from almost 5000 global weather stations and comparing them to widely used grid-cell based climate model outputs over the same period, our research explores methods to assess the frequency and intensity of heat waves as well as the associated occupational health effects at any location around the world in the future.Weather station temperature extreme values (WBGT) for the 3 hottest days in 30 years exceed the mean WBGT of the hottest month calculated from climate models in the same grid-cell by about 2 degrees in the tropics but by 10 degrees at higher latitudes in temperate climate regions.Our model based on the relationship between actual recorded periods of elevated heat-stress and grid-cell based climate projections, in combination with population and employment projections, can quantify national and regional productivity loss and health effects with greater certainty than is currently the case.


PeerJ ◽  
2015 ◽  
Vol 3 ◽  
pp. e863 ◽  
Author(s):  
Dan A. Smale ◽  
Anna L.E. Yunnie ◽  
Thomas Vance ◽  
Stephen Widdicombe

Extreme climatic events, including heat waves (HWs) and severe storms, influence the structure of marine and terrestrial ecosystems. Despite growing consensus that anthropogenic climate change will increase the frequency, duration and magnitude of extreme events, current understanding of their impact on communities and ecosystems is limited. Here, we used sessile invertebrates on settlement panels as model assemblages to examine the influence of HW magnitude, duration and timing on marine biodiversity patterns. Settlement panels were deployed in a marina in southwest UK for ≥5 weeks, to allow sufficient time for colonisation and development of sessile fauna, before being subjected to simulated HWs in a mesocosm facility. Replicate panel assemblages were held at ambient sea temperature (∼17 °C), or +3 °C or +5 °C for a period of 1 or 2 weeks, before being returned to the marina for a recovery phase of 2–3 weeks. The 10-week experiment was repeated 3 times, staggered throughout summer, to examine the influence of HW timing on community impacts. Contrary to our expectations, the warming events had no clear, consistent impacts on the abundance of species or the structure of sessile assemblages. With the exception of 1 high-magnitude long-duration HW event, warming did not alter not assemblage structure, favour non-native species, nor lead to changes in richness, abundance or biomass of sessile faunal assemblages. The observed lack of effect may have been caused by a combination of (1) the use of relatively low magnitude, realistic heat wave treatments compared to previous studies (2), the greater resilience of mature adult sessile fauna compared to recruits and juveniles, and (3) the high thermal tolerance of the model organisms (i.e., temperate fouling species, principally bryozoans and ascidians). Our study demonstrates the importance of using realistic treatments when manipulating climate change variables, and also suggests that biogeographical context may influence community-level responses to short-term warming events, which are predicted to increase in severity in the future.


2007 ◽  
Vol 2 (1) ◽  
pp. 33-42 ◽  
Author(s):  
James H. Diaz, MD, MPH-TM, DrPH

With a documented increase in average global surface temperatures of 0.6ºC since 1975, Earth now appears to be warming due to a variety of climatic effects, most notably the cascading effects of greenhouse gas emissions resulting from human activities. There remains, however, no universal agreement on how rapidly, regionally, or asymmetrically the planet will warm or on the true impact of global warming on natural disasters and public health outcomes. Most reports to date of the public health impact of global warming have been anecdotal and retrospective in design and have focused on the increase in heat-stroke deaths following heat waves and on outbreaks of airborne and arthropod-borne diseases following tropical rains and flooding that resulted from fluctuations in ocean temperatures. The effects of global warming on rainfall and drought, tropical cyclone and tsunami activity, and tectonic and volcanic activity will have far-reaching public health effects not only on environmentally associated disease outbreaks but also on global food supplies and population movements. As a result of these and other recognized associations between climate change and public health consequences, many of which have been confounded by deficiencies in public health infrastructure and scientific debates over whether climate changes are spawned by atmospheric cycles or anthropogenic influences, the active responses to progressive climate change must include combinations of economic, environmental, legal, regulatory, and, most importantly, public health measures.


2019 ◽  
Vol 11 (3) ◽  
pp. 505-520 ◽  
Author(s):  
Kerstin K. Zander ◽  
Simon Moss ◽  
Stephen T. Garnett

Abstract There is mounting evidence that climate change impacts compromise people’s well-being. Many regions of Australia have experienced record hot temperatures and more frequent and longer heat waves with substantial consequences for people, economies, and ecosystems. Using data from an Australia-wide online survey with 1101 respondents, we investigated the relationship between self-reported measures of heat stress and different dimensions of subjective well-being. After controlling for socioeconomic factors known to affect well-being, we found that heat stress was linked to people’s certainty about and planning for their future but not to their life satisfaction, happiness, social state, capabilities, or purpose in life. This result indicates that, while heat is not associated with present well-being, many people worry about the effect that increased heat will have on their future well-being. People who were uncertain about their future were also more likely than those who did not feel uncertain to think that heat compromised their productivity. People who agreed that they were competent and capable in their activities rated their heat stress–related productivity loss lower than those who disagreed. The findings are relevant for future studies using life-satisfaction approaches to assess consequences of climate change impacts and to studies in “happiness economics.” We recommend that future research on the impact of climate change on well-being go beyond simply life satisfaction and happiness and test multiple dimensions of well-being.


Author(s):  
J. Chang-Fung-Martel ◽  
M. T. Harrison ◽  
J. N. Brown ◽  
R. Rawnsley ◽  
A. P. Smith ◽  
...  

AbstractChanges in frequency and severity of heat waves due to climate change pose a considerable challenge to livestock production systems. Although it is well known that heat stress reduces feed intake in cattle, effects of heat stress vary between animal genotypes and climatic conditions and are context specific. To derive a generic global prediction that accounts for the effects of heat stress across genotypes, management and environments, we conducted a systematic literature review and a meta-analysis to assess the relationship between dry matter intake (DMI) and the temperature-humidity index (THI), two reliable variables for the measurement of feed intake and heat stress in cattle, respectively. We analysed this relationship accounting for covariation in countries, breeds, lactation stage and parity, as well as the efficacy of various physical cooling interventions. Our findings show a significant negative correlation (r =  − 0.82) between THI and DMI, with DMI reduced by 0.45 kg/day for every unit increase in THI. Although differences in the DMI-THI relationship between lactating and non-lactating cows were not significant, effects of THI on DMI varied between lactation stages. Physical cooling interventions (e.g. provision of animal shade or shelter) significantly alleviated heat stress and became increasingly important after THI 68, suggesting that this THI value could be viewed as a threshold for which cooling should be provided. Passive cooling (shading) was more effective at alleviating heat stress compared with active cooling interventions (sprinklers). Our results provide a high-level global equation for THI-DMI across studies, allowing next-users to predict effects of heat stress across environments and animal genotypes.


2021 ◽  
Author(s):  
Ranjita Sinha ◽  
Sara I Zandalinas ◽  
Yosef Fichman ◽  
Sidharth Sen ◽  
Aurelio G Cadenas ◽  
...  

Heat waves, occurring during droughts, can have a devastating impact on yield, especially if they happen during the flowering and seed set stages of the crop cycle. Global warming and climate change are driving an alarming increase in the frequency and intensity of combined drought and heat stress episodes, critically threatening global food security. Previous studies revealed that during a combination of drought and heat stress stomata on leaves of many plants are closed, preventing cooling by transpiration. Because high temperature is detrimental to reproductive processes, essential for plant yield, we measured the inner temperature, transpiration, and sepal stomatal aperture of closed soybean flowers, developing on plants subjected to a combination of drought and heat stress. Here, we report that during a combination of drought and heat stress soybean plants prioritize transpiration through flowers over transpiration through leaves by opening their flower stomata, while keeping their leaf stomata closed. This acclimation strategy, termed differential transpiration, lowers flower inner temperature by about 2-3oC, protecting reproductive processes at the expense of vegetative tissues. Manipulating stomatal regulation, stomatal size and/or stomatal density of flowers could therefore serve as a viable strategy to enhance the yield of different crops and mitigate some of the current and future impacts of global warming and climate change on agriculture.


2021 ◽  
Author(s):  
Samantha S Fontaine ◽  
Patrick M Mineo ◽  
Kevin D Kohl

Predicting the responses of ectotherms to climate change is a global conservation priority which requires identifying factors that influence how animals respond physiologically to changing temperature. Host-associated microbial communities impact animal physiology and have been shown to influence host thermal tolerance in invertebrate systems. However, the role of commensal microbiota in thermal tolerance of ectothermic vertebrates is unknown. Here we show that experimentally depleting the diversity of the tadpole gut microbiome through environmental water sterilization reduces the host's acute thermal tolerance to both heat and cold, alters the thermal sensitivity of locomotor performance, and reduces animal survival under acute heat stress. We show that these tadpoles have reduced activities of mitochondrial enzymes and altered metabolic rates compared to tadpoles colonized with a diverse microbiota, which could underlie differences in thermal phenotypes. Our results demonstrate, for the first time, a link between the gut microbiome of an ectothermic vertebrate and the host's thermal tolerance, performance, and fitness, thus highlighting the importance of considering host-associated microbial communities when predicting species' responses to climate change.


2020 ◽  
Author(s):  
Elena Hamann ◽  
Cameron Blevins ◽  
Steven J. Franks ◽  
M. Inam Jameel ◽  
Jill T. Anderson

ABSTRACTPlant-herbivore interactions have evolved in response to co-evolutionary dynamics, along with selection driven by abiotic conditions. We examine how abiotic factors influence trait expression in both plants and herbivores to evaluate how climate change will alter this long-standing interaction. The paleontological record documents increased herbivory during periods of global warming in the deep past. In phylogenetically-corrected meta-analyses, we find that elevated temperatures, CO2 concentration, drought stress and nutrient conditions directly and indirectly induce greater herbivore consumption, primarily in agricultural systems. Additionally, elevated CO2 delays herbivore development, but increased temperatures accelerate development. For annual plants, higher temperatures, CO2, and drought stress increase foliar herbivory, and our meta-analysis suggests that greater temperatures and drought may heighten florivory in perennials. Human actions are causing concurrent shifts in CO2, temperature, precipitation regimes and nitrogen deposition, yet few studies evaluate interactions among these changing conditions. We call for additional multifactorial studies that simultaneously manipulate multiple climatic factors, which will enable us to generate more robust predictions of how climate change could disrupt plant-herbivore interactions. Finally, we consider how shifts in insect and plant phenology and distribution patterns could lead to ecological mismatches, and how these changes may drive future adaptation and coevolution between interacting species.


2009 ◽  
Vol 33 (4) ◽  
pp. 611 ◽  
Author(s):  
Peng Bi ◽  
Arthur Saniotis

Studies in global warming and climate change indicate that human populations will be deleteriously affected in the future. Studies forecast that Australia will experience increasing heat waves and droughts. Heat stress caused by frequent heat waves will have a marked effect on older Australians due to physiological and pharmacological factors. In this paper we present an overview of some of the foreseeable issues which older Australians will face from a public health perspective.


Sign in / Sign up

Export Citation Format

Share Document