scholarly journals In vitro activity of Indian almond (Terminalia catappa) leaf crude extracts against selected dermatophytes

2021 ◽  
pp. 55-66
Author(s):  
Roxanne Joy Colendres ◽  
Carl Leonard Pradera

Fungal infections caused by Trichophyton mentagrophytes, Aspergillus fumigatus , and Malassezia pachydermatis are among the major contributors to multisystemic health problems such as dermatitis, otitis, and respiratory disorders among humans and animals. This study was conducted to determine the in vitro antifungal activity of Terminalia catappa leaf crude aqueous and ethanolic extracts against these fungal pathogens by measuring the zone of inhibition (ZI) using the agar well diffusion technique. Qualitative phytochemical screening tests were also performed to determine bioactive compounds present in the plant extract. Results show that the plant’s crude aqueous (CAE) and ethanolic extracts (CEE) were found to be effective against all test fungi. M. pachydermatis showed susceptibility towards CAE and CEE from T1 (100%), T2 (75%), T3 (50%) and T4 (25%), with the highest mean ZI of 18.33mm and 13.33, respectively. On the other hand, T. mentagrophytes was inhibited by CAE and CEE at T1 (100%), T2 (75%) and T3 (50%) with the highest mean ZI of 9.67mm and 10.33mm, respectively. At the same time, it was observed that A. fumigatus had reactive sensitivity towards CAE and CEE at T1 (100%) and T2 (75%), with the highest mean ZI of 9.33mm and 10.33mm, respectively. Moreover, phytochemical tests showed that the plant’s leaf crude extracts contain alkaloids, saponins, and tannins, which could potentially inhibit fungal growth.

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Nawal Abd El-Baky ◽  
Raoufa Ahmed Abdel Rahman ◽  
Mona Mohammed Sharaf ◽  
Amro Abd Al Fattah Amara

After introducing the idea of using concentrations equal to or less than the minimum inhibition concentration (MIC) of some active chemical compounds for evacuating microbial cells, different types of microbes were evacuated. The original protocol was given the name sponge-like protocol and then was reduced and modified from a microorganism to another to prepare microbial ghosts for various applications such as immunological applications, drug delivery, and isolation of DNA and protein. Fungal pathogens that infect plants critically affect cost effectiveness, quality, and quantity of their production. They kill plant cells and/or cause plant stress. Plant fungal infections can originate from many sources such as infected soil, seeds, or crop debris causing diseases and quality losses around the world with billions of US dollars annually as costs of the associated productivity loss. This study focused on the application of the sponge-like protocol in protecting in vitro tissue cultures of plants against fungal pathogens. This can be useful for research purposes or may be developed to be introduced in field applications. Aspergillus flavus and Aspergillus niger infection in tissue culture of jojoba (Simmondsia chinensis (Link) Schn.) was used as a model to establish the employment of this protocol to control plant fungal diseases. The best conditions for A. flavus and A. niger ghosts production previously mapped by randomization experimental design (reduced Plackett–Burman experimental design) were used to prepare fungal ghosts. SDS, NaOH, NaHCO3, and H2O2 were used in their MIC (+1 level) or minimum growth concentration (MGC, −1 level) according to the determined optimal experimental design. The release of both of DNA and protein from the fungal cells was evaluated spectrophotometrically at 260nm and 280nm, respectively, as an indicator for cell loss of their cytoplasm. Fungal ghost cells were also examined by transmission electron microscopy. After confirming the preparation of high-quality fungal ghost cells, the same conditions were mimicked to control plant fungal infection. Jojoba grown in tissue culture was sprayed with fungal cells (about 103 CFU) as a control experiment or fungal cells followed by treatment with solution (a) represents the fungal ghost cells formation calculated critical concentration (FGCCC) of SDS, NaOH, and NaHCO3 and then treatment with solution (b) represents H2O2 FGCCC. The plant was examined on day 0 (plant grown before any infection or infection followed by treatment), day 5 (plant at day 5 after infection or infection followed by treatment), and day 10 (plant at day 10 after infection or infection followed by treatment). We observed fungal growth in case of control experiments at days 5 and 10 on the tissue culture medium, as well as plant, and the absence of any fungal growth in case of plant treated with FGCCC even after day 10. We recommend using this FGCCC in the form of chemical spraying formulation to treat the plants aiming to control different plant fungal infections in in vitro tissue culture systems or applied in field.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 737
Author(s):  
Marina Pekmezovic ◽  
Melina Kalagasidis Krusic ◽  
Ivana Malagurski ◽  
Jelena Milovanovic ◽  
Karolina Stępień ◽  
...  

Novel biodegradable and biocompatible formulations of “old” but “gold” drugs such as nystatin (Nys) and amphotericin B (AmB) were made using a biopolymer as a matrix. Medium chain length polyhydroxyalkanoates (mcl-PHA) were used to formulate both polyenes (Nys and AmB) in the form of films (~50 µm). Thermal properties and stability of the materials were not significantly altered by the incorporation of polyenes in mcl-PHA, but polyene containing materials were more hydrophobic. These formulations were tested in vitro against a panel of pathogenic fungi and for antibiofilm properties. The films containing 0.1 to 2 weight % polyenes showed good activity and sustained polyene release for up to 4 days. A PHA monomer, namely 3-hydroxydecanoic acid (C10-OH), was added to the films to achieve an enhanced synergistic effect with polyenes against fungal growth. Mcl-PHA based polyene formulations showed excellent growth inhibitory activity against both Candida yeasts (C. albicans ATCC 1023, C. albicans SC5314 (ATCC MYA-2876), C. parapsilosis ATCC 22019) and filamentous fungi (Aspergillus fumigatus ATCC 13073; Trichophyton mentagrophytes ATCC 9533, Microsporum gypseum ATCC 24102). All antifungal PHA film preparations prevented the formation of a C. albicans biofilm, while they were not efficient in eradication of mature biofilms, rendering them suitable for the transdermal application or as coatings of implants.


2021 ◽  
Vol 16 (7) ◽  
pp. 15-22
Author(s):  
Paul Giftson ◽  
Jerrine Joseph ◽  
Revathy Kalyanasundaram ◽  
V. Ramesh Kumar ◽  
Wilson Aruni

Tuberculosis (TB) is a communicable disease and remains one of the top 10 causes of death worldwide. One fourth of the world population is infected with TB at a risk of developing disease. The increase in the incidence of drug resistant TB around the world urges the need to develop a new candidate to fight against the disease. Plants were considered as the rich source of bioactive components to be used as potential drugs. Medicinal plants are used in pure as well as crude materials for their medicinal properties. Our research aims in identifying the phyto-molecules which have anti- tuberculosis property. Four medicinal plants namely, Acalyphaciliata (Kuppaimeni), Solanumtrilobatum (Thuthuvalai), Momordicacharantia (Bitter Gourd) and Sennaauriculata (Avaram) were chosen to evaluate their antimicrobial activity focusing on anti-tubercular activity. The methanol extracts of the medicinal plants showed significant inhibitory activity against bacterial and fungal pathogens. Sennaauriculata methanol extracts showed activity against S. aureus, E. coli, P. aeruginosa and C. albicans. In the screening of antimycobacterial activity done by LRP assay, among the plant extracts tested, the hexane crude extracts of Momordicacharantia (Bitter Gourd) showed 82.2% and 81.03% of inhibition against M. tuberculosis H37Rv at 500µg/ml and 250µg/ml concentration respectively. Similarly, the methanol crude extracts of Momordicacharantia showed 87.14% and 63.55% of inhibition at 500µg/ml and 250µg/ml concentration respectively.


2021 ◽  
Vol 30 (3) ◽  
pp. 127-134
Author(s):  
Shaimaa A.S. Selem ◽  
Neveen A. Hassan ◽  
Mohamed Z. Abd El-Rahman ◽  
Doaa M. Abd El-Kareem

Background: In intensive care units, invasive fungal infections have become more common, particularly among immunocompromised patients. Early identification and starting the treatment of those patients with antifungal therapy is critical for preventing unnecessary use of toxic antifungal agents. Objective: The aim of this research is to determine which common fungi cause invasive fungal infection in immunocompromised patients, as well as their antifungal susceptibility patterns in vitro, in Assiut University Hospitals. Methodology: This was a hospital based descriptive study conducted on 120 patients with clinical suspicion of having fungal infections admitted at different Intensive Care Units (ICUs) at Assiut University Hospitals. Direct microscopic examination and inoculation on Sabouraud Dextrose Agar (SDA) were performed on the collected specimens. Isolated yeasts were classified using phenotypic methods such as chromogenic media (Brilliance Candida agar), germ tube examination, and the Vitek 2 system for certain isolates, while the identification of mould isolates was primarily based on macroscopic and microscopic characteristics. Moulds were tested in vitro for antifungal susceptibility using the disc diffusion, and yeast were tested using Vitek 2 device cards. Results: In this study, 100 out of 120 (83.3%) of the samples were positive for fungal infection. Candida and Aspergillus species were the most commonly isolated fungal pathogens. The isolates had the highest sensitivity to Amphotericin B (95 %), followed by Micafungin (94 %) in an in vitro sensitivity survey. Conclusion: Invasive fungal infections are a leading cause of morbidity and mortality in immunocompromised patients, with Candida albicans being the most frequently isolated yeast from various clinical specimens; however, the rise in resistance, especially to azoles, is a major concern.


2019 ◽  
Vol 5 (3) ◽  
pp. 67 ◽  
Author(s):  
Friedman ◽  
Schwartz

: The landscape of clinical mycology is constantly changing. New therapies for malignant and autoimmune diseases have led to new risk factors for unusual mycoses. Invasive candidiasis is increasingly caused by non-albicans Candida spp., including C. auris, a multidrug-resistant yeast with the potential for nosocomial transmission that has rapidly spread globally. The use of mould-active antifungal prophylaxis in patients with cancer or transplantation has decreased the incidence of invasive fungal disease, but shifted the balance of mould disease in these patients to those from non-fumigatus Aspergillus species, Mucorales, and Scedosporium/Lomentospora spp. The agricultural application of triazole pesticides has driven an emergence of azole-resistant A. fumigatus in environmental and clinical isolates. The widespread use of topical antifungals with corticosteroids in India has resulted in Trichophyton mentagrophytes causing recalcitrant dermatophytosis. New dimorphic fungal pathogens have emerged, including Emergomyces, which cause disseminated mycoses globally, primarily in HIV infected patients, and Blastomyces helicus and B. percursus, causes of atypical blastomycosis in western parts of North America and in Africa, respectively. In North America, regions of geographic risk for coccidioidomycosis, histoplasmosis, and blastomycosis have expanded, possibly related to climate change. In Brazil, zoonotic sporotrichosis caused by Sporothrix brasiliensis has emerged as an important disease of felines and people.


Antibiotics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 188 ◽  
Author(s):  
Alberto Antonelli ◽  
Luca Giovannini ◽  
Ilaria Baccani ◽  
Valentina Giuliani ◽  
Riccardo Pace ◽  
...  

The recent increase in infections mediated by drug-resistant bacterial and fungal pathogens underlines the urgent need for novel antimicrobial compounds. In this study, the antimicrobial activity (inhibitory and cidal) of HybenX®, a novel dessicating agent, in comparison with commonly used sodium hypochlorite and chlorhexidine, against a collection of bacterial and yeast strains representative of the most common human pathogenic species was evaluated. The minimal inhibitory, bactericidal, and fungicidal concentrations (MIC, MBC, and MFC, respectively) of the three different antimicrobial agents were evaluated by broth microdilution assays, followed by subculturing of suitable dilutions. HybenX® was active against 26 reference strains representative of staphylococci, enterococci, Enterobacterales, Gram-negative nonfermenters, and yeasts, although at higher concentrations than sodium hypochlorite and chlorhexidine. HybenX® MICs were 0.39% for bacteria (with MBCs ranging between 0.39% and 0.78%), and 0.1–0.78% for yeasts (with MFCs ranging between 0.78% and 1.6%). HybenX® exhibited potent inhibitory and cidal activity at low concentrations against several bacterial and yeast pathogens. These findings suggest that HybenX® could be of interest for the treatment of parodontal and endodontic infections and also for bacterial and fungal infections of other mucous membranes and skin as an alternative to sodium hypochlorite and chlorhexidine.


1999 ◽  
Vol 12 (1) ◽  
pp. 40-79 ◽  
Author(s):  
Daniel J. Sheehan ◽  
Christopher A. Hitchcock ◽  
Carol M. Sibley

SUMMARY Major developments in research into the azole class of antifungal agents during the 1990s have provided expanded options for the treatment of many opportunistic and endemic fungal infections. Fluconazole and itraconazole have proved to be safer than both amphotericin B and ketoconazole. Despite these advances, serious fungal infections remain difficult to treat, and resistance to the available drugs is emerging. This review describes present and future uses of the currently available azole antifungal agents in the treatment of systemic and superficial fungal infections and provides a brief overview of the current status of in vitro susceptibility testing and the growing problem of clinical resistance to the azoles. Use of the currently available azoles in combination with other antifungal agents with different mechanisms of action is likely to provide enhanced efficacy. Detailed information on some of the second-generation triazoles being developed to provide extended coverage of opportunistic, endemic, and emerging fungal pathogens, as well as those in which resistance to older agents is becoming problematic, is provided.


2020 ◽  
Vol 295 (42) ◽  
pp. 14458-14472
Author(s):  
Emmanuelle V. LeBlanc ◽  
Elizabeth J. Polvi ◽  
Amanda O. Veri ◽  
Gilbert G. Privé ◽  
Leah E. Cowen

Fungi inhabit extraordinarily diverse ecological niches, including the human body. Invasive fungal infections have a devastating impact on human health worldwide, killing ∼1.5 million individuals annually. The majority of these deaths are attributable to species of Candida, Cryptococcus, and Aspergillus. Treating fungal infections is challenging, in part due to the emergence of resistance to our limited arsenal of antifungal agents, necessitating the development of novel therapeutic options. Whereas conventional antifungal strategies target proteins or cellular components essential for fungal growth, an attractive alternative strategy involves targeting proteins that regulate fungal virulence or antifungal drug resistance, such as regulators of fungal stress responses. Stress response networks enable fungi to adapt, grow, and cause disease in humans and include regulators that are highly conserved across eukaryotes as well as those that are fungal-specific. This review highlights recent developments in elucidating crystal structures of fungal stress response regulators and emphasizes how this knowledge can guide the design of fungal-selective inhibitors. We focus on the progress that has been made with highly conserved regulators, including the molecular chaperone Hsp90, the protein phosphatase calcineurin, and the small GTPase Ras1, as well as with divergent stress response regulators, including the cell wall kinase Yck2 and trehalose synthases. Exploring structures of these important fungal stress regulators will accelerate the design of selective antifungals that can be deployed to combat life-threatening fungal diseases.


2010 ◽  
Vol 59 (2) ◽  
pp. 200-205 ◽  
Author(s):  
Ildikó Nyilasi ◽  
Sándor Kocsubé ◽  
Miklós Pesti ◽  
Gyöngyi Lukács ◽  
Tamás Papp ◽  
...  

The in vitro antifungal activities of primycin (PN) and various statins against some opportunistic pathogenic fungi were investigated. PN completely inhibited the growth of Candida albicans (MIC 64 μg ml−1) and Candida glabrata (MIC 32 μg ml−1), and was very effective against Paecilomyces variotii (MIC 2 μg ml−1), but had little effect on Aspergillus fumigatus, Aspergillus flavus or Rhizopus oryzae (MICs >64 μg ml−1). The fungi exhibited different degrees of sensitivity to the statins; fluvastatin (FLV) and simvastatin (SIM) exerted potent antifungal activities against a wide variety of clinically important fungal pathogens. Atorvastatin, rosuvastatin and lovastatin (LOV) had a slight effect against all fungal isolates tested, whereas pravastatin was completely ineffective. The in vitro interactions between PN and the different statins were investigated using a standard chequerboard titration method. When PN was combined with FLV, LOV or SIM, both synergistic and additive effects were observed. The extent of inhibition was higher when these compounds were applied together, and the concentrations of PN and the given statin needed to block fungal growth completely could be decreased by several dilution steps. Similar interactions were observed when the variability of the within-species sensitivities was investigated.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Han Chien Lin ◽  
Yu-Liang Kuo ◽  
Wen-Ju Lee ◽  
Hui-Yi Yap ◽  
Shao-Hung Wang

Dermatophytosis, which is caused mainly by genera ofTrichophyton,Epidermophyton, andMicrosporum, is a frequent dermatological problem in tropical and subtropical countries. Investigations were carried out in this study to evaluate the antidermatophytic activity of the stems, leaves, and seeds ofCroton tiglium, one of the traditional medicine plants indigenous to Asia. Ethanolic extracts of the stems, leaves, and seeds ofC. tigliumwere prepared by cold soak or heat reflux methods. The antidermatophytic activities of the extracts were evaluated by disc diffusion and microdilution susceptibility assays againstTrichophyton mentagrophytes,T. rubrum, andEpidermophyton floccosum. The active components in the extracts were analyzed and identified by GC-MS. All ethanolic extracts ofC. tigliumshowed some antifungal activities against the three dermatophytes. The ethanolic stem extract had the greatest inhibitory activities againstT. mentagrophytesandE. floccosumwith MICs at 0.16 mg/mL and had a lower activity againstT. rubrum(MIC: 0.31 mg/mL). Oleic acid and hexadecanoic acid were found to be the major constituents in the stem extract that demonstrated strong antidermatophytic activities. The ethanolic extracts of stem or seed ofC. tigliumexhibit strong antidermatophytic activities and, thus, could be considered for application on treating skin fungal infections after appropriate processing.


Sign in / Sign up

Export Citation Format

Share Document