scholarly journals Application of spruce wood flour as a cellulosic-based wood additive for recycled paper applications— A pilot paper machine study

TAPPI Journal ◽  
2021 ◽  
Vol 20 (10) ◽  
pp. 641-652
Author(s):  
KLAUS DOLLE ◽  
SANDRO ZIER

This study gives a first insight into the use of wood flour as a plant-based and cellulosic-based alter-native additive for newsprint and paperboard production using 100% recycled fibers as a raw material. The study compares four varieties of a spruce wood flour product serving as cellulosic-based additives at addition rates of 2%, 4%, and 6% during operation of a 12-in. laboratory pilot paper machine. Strength properties of the produced newsprint and linerboard products were analyzed. Results suggested that spruce wood flour as a cellulosic-based additive represents a promising approach for improving physical properties of paper and linerboard products made from 100% recycled fiber content. This study shows that wood flour pretreated with a plant-based polysaccharide and untreated spruce wood flour product with a particle size range of 20 μm to 40 μm and 40 μm to 70 μm can increase the bulk and tensile properties in newsprint and linerboard applications.

2016 ◽  
Vol 3 (02) ◽  
Author(s):  
Trismawati ,

Paper machine has been designed for special purposes in accordance with the fiber characteristic used as the raw material, fiber development needed, and the fiber network developed so that the incremental water content reduction in the paper web from the inlet point of cylindrical dryer up to the outlet point of cylindrical dryer optimum. In industrial application, the paper machine designed for basis weight 60 gsm and virgin pulp as the raw material is often used for 45 gsm productions with virgin and recycled fiber as the raw material because of the paper demand. In this research the cylindrical dryer performance was observed when used for 45 gsm writing and printing paper production and their ability to dry the paper up to the design speed was simulated. Hopefully the result will able to give a contribution for energy efficiency so that the reduction of contribution margin can be anticipated.Keywords: cylindrical dryer, designed speed, energy efficiency, contribution margin. ABSTRAK Mesin kertas telah dirancang sesuai peruntukannya khususnya menyesuaikan dengan karakteristik serat yang digunakan sebagai bahan baku, pengembangan serat yang diinginkan dan jaringan serat yang terbentuk. Hal ini agar pengurangan kadar air yang terjadi secara bertahap dari pengering silinder ujung awal sampai ujung akhir dapat berjalan optimal. Dalam aplikasi industri sering dilakukan penyimpangan seperti mesin kertas yang dirancang untuk untuk memproduksi kertas tulis cetak 60 gsm bahan baku virgin digunakan untuk memproduksi kertas tulis cetak 45 gsm berbahan baku virgin maupun kertas daur-ulang berdasarkan permintaan pasar. Dalam penelitian ini diamati kajian kinerja pengering silinder mesin kertas saat pengeringan produk kertas tulis cetak 45 gsm dan simulasi kemampuan pengeringan pengering silinder tersebut sampai batas kecepatan rancangan mesin kertas. Hasil diharapkan dapat memberikan kontribusi terhadap efisiensi energi, sehingga langkah antisipasi terhadap kemungkinan penurunan kontribusi keuntungan dapat dilakukan.Kata kunci: pengering silinder, kecepatan rancangan, efisiensi energi, kontribusi keuntungan


2012 ◽  
Vol 27 (1) ◽  
pp. 130-136
Author(s):  
Antti Oksanen ◽  
Kristian Salminen ◽  
Jarmo Kouko ◽  
Elias Retulainen

Abstract Increase of filler content in paper improves quality of the final product and reduces raw material costs. However, this is often accompanied by deterioration of paper machine runnability. In this paper the effects of stratifying PCC (precipitated calcium carbonate) and TMP on fine paper quality and the mechanical properties of dry and wet paper were studied. In addition, a new method was introduced for evaluating the layer purity of pulp and filler stratifying by measuring the fibre length distribution in the thickness direction of the paper. The filler addition reduced the mechanical properties of paper more with chemical than mechanical pulps, with similar dry tensile indices. Stratifying filler onto paper surfaces gave higher dry tensile strength properties than samples with mixed structures, whereas only a small positive effect was detected for wet tensile and relaxation properties as a result of stratifying. Stratifying fillers only had a small negative effect on the internal bond strength. Stratifying or mixing TMP with a chemical pulp blend was shown to enable an increase in the filler content of 10% without significant changes in the residual tension (tension after 0.475 s of relaxation) or tensile index of wet samples. Based on layer purity analysis, stratifying TMP and filler was found to be successful in these trials.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (07) ◽  
pp. 407-415
Author(s):  
Ashok Ghosh ◽  
Breland Thornton ◽  
Peter Hart

Recycled fiber-based papermaking in America is experiencing a persistent reduction in the strength of the incoming fiber. To maintain paper strength properties, paper mills respond by increasing basis weight, dry strength, etc. On average, the fiber cost component in recycled paper is approximately 40% of the total manufacturing cost. Increased fiber weight results in higher operating cost and has a negative effect on production rate, especially on dryer-limited paper machines. Increased pH and use of certain enzymes can improve strength during subsequent refining. The ProLab refiner was used to generate laboratory refining curves to evaluate changes in fiber bonding. The effect of pH and enzymes pretreatment on the strength development and change in drainage of recycled fibers with refining was evaluated.


MRS Bulletin ◽  
1994 ◽  
Vol 19 (2) ◽  
pp. 41-45 ◽  
Author(s):  
June D. Passaretti ◽  
Trudy D. Young ◽  
Mick J. Herman ◽  
D. Bruce Evans

Printing and writing paper represents 30% by weight of all domestically made paper products. Today, however, less than 50% of that paper is recycled. The problem with waste paper from homes and offices is that it contains dyes, inks, and chemicals. If these additives are not removed properly—with no fiber degradation—the recycled paper will be of an inferior quality for writing and printing.Recycling, however, is the future. In 1990, 28.9 million tons of paper were collected for recycling, representing a collection rate of 33.5%. By the year 1995, the collection rate goal is 40%, with favorable economics supporting increased utilization of recovered paper. For example, a ton of paper made from 100% waste paper saves 17 trees, 4,100 kWh of energy (approximately 6 months of power used by the average home), 7,000 gallons of water, 60 pounds of air-polluting effluents, and 3 cubic yards of landfill.Two of the issues facing recycled fiber utilization are the cost and visual quality of the final sheet. Paper brightness, opacity, and printability are the industry's biggest concerns when comparing the quality of recycled fibers to that of virgin fibers. The common approach to increasing brightness is to add a white filler pigment such as precipitated calcium carbonate (PCC), ground limestone, clay, and/or titanium dioxide. Chemical optical brighteners have also been used, but their use will decline as consumers ask what impact the brightening chemicals have on the environment.


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1800 ◽  
Author(s):  
Ana Balea ◽  
Jose Luis Sanchez-Salvador ◽  
M. Concepcion Monte ◽  
Noemi Merayo ◽  
Carlos Negro ◽  
...  

The recycled paper and board industry needs to improve the quality of their products to meet customer demands. The refining process and strength additives are commonly used to increase mechanical properties. Interfiber bonding can also be improved using cellulose nanofibers (CNF). A circular economy approach in the industrial implementation of CNF can be addressed through the in situ production of CNF using side cellulose streams of the process as raw material, avoiding transportation costs and reducing industrial wastes. Furthermore, CNF fit for use can be produced for specific industrial applications.This study evaluates the feasibility of using two types of recycled fibers, simulating the broke streams of two paper machines producing newsprint and liner for cartonboard, to produce in situ CNF for direct application on the original pulps, old newsprint (ONP), and old corrugated container (OCC), and to reinforce the final products. The CNF were obtained by 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO)-mediated oxidation and homogenization at 600 bar. Handsheets were prepared with disintegrated recycled pulp and different amounts of CNF using a conventional three-component retention system. Results show that 3 wt.% of CNF produced with 10 mmol of NaClO per gram of dry pulp improve tensile index of ONP ~30%. For OCC, the same treatment and CNF dose increase tensile index above 60%. In both cases, CNF cause a deterioration of drainage, but this effect is effectively counteracted by optimising the retention system.


TAPPI Journal ◽  
2013 ◽  
Vol 12 (6) ◽  
pp. 9-15 ◽  
Author(s):  
TOMI HIETANEN ◽  
JUHA TAMPER ◽  
KAJ BACKFOLK

The use of a new, technical, high-purity magnesium hydroxide-based peroxide bleaching additive was evaluated in full mill-scale trial runs on two target brightness levels. Trial runs were conducted at a Finnish paper mill using Norwegian spruce (Picea abies) as the raw material in a conventional pressurized groundwood process, which includes a high-consistency peroxide bleaching stage. On high brightness grades, the use of sodium-based additives cause high environmental load from the peroxide bleaching stage. One proposed solution to this is to replace all or part of the sodium hydroxide with a weaker alkali, such as magnesium hydroxide. The replacement of traditional bleaching additives was carried out stepwise, ranging from 0% to 100%. Sodium silicate was dosed in proportion to sodium hydroxide, but with a minimum dose of 0.5% by weight on dry pulp. The environmental effluent load from bleaching of both low and high brightness pulps was significantly reduced. We observed a 35% to 48% reduction in total organic carbon (TOC), 37% to 40% reduction in chemical oxygen demand (COD), and 34% to 60% reduction in biological oxygen demand (BOD7) in the bleaching effluent. At the same time, the target brightness was attained with all replacement ratios. No interference from transition metal ions in the process was observed. The paper quality and paper machine runnability remained good during the trial. These benefits, in addition to the possibility of increasing production capacity, encourage the implementation of the magnesium hydroxide-based bleaching concept.


TAPPI Journal ◽  
2014 ◽  
Vol 13 (11) ◽  
pp. 37-43 ◽  
Author(s):  
LIISA KOTANEN ◽  
MIKA KÖRKKÖ ◽  
ARI ÄMMÄLÄ ◽  
JOUKO NIINIMÄKI

The use of recovered paper as a raw material for paper production is by far the most economical and ecological strategy for the disposal of waste paper. However, paper production from recovered paper furnish generates a great amount of residues, and the higher the demand requirements for the end product, the higher the amount of rejected material. The reason for this is that the selectivity of the deinking process is limited; therefore, some valuable components are also lost in reject streams. The rejection of usable components affects the economics of recycled paper production. As the cost of waste disposal continues to increase, this issue is becoming more and more severe. This paper summarizes the current state of the resource efficiency in recycled pulp production and provides information on the volumes of rejected streams and the usable material within them. Various means to use these reject streams are also discussed, including the main findings of a recent thesis by the main author. This review summarizes current internal and external use of reject streams generated in the deinking operations.


1996 ◽  
Vol 30 (6) ◽  
Author(s):  
Katerina Kwasniakova ◽  
BohuslavV. Kokta ◽  
Zoltan Koran

2012 ◽  
Vol 174-177 ◽  
pp. 135-139
Author(s):  
Qing Bo Tian ◽  
Li Zong Chen ◽  
Li Na Xu ◽  
Yong Guang Fang

A brick material was prepared with marble wastes as main raw material by pressure forming and water-curing at room temperature. With the increases of the amounts of water additions, the compressive strength increased gradually and obtained a highest value of 34.8MPa in the sample of the ratio of cement: wastes=20:100 at 17.0% water addition, above which the strength had an adverse change and decreased. The addition of glass fiber had small effects on the strength, water absorbing rate and density comparing with that of wood flour. The strengths of sample had changed obviously with the increment of the forming pressures. However, the strength would fall because of the lamination caused by the recovering effects of the wood flour in the sample with replacement of the wood flour to marble wastes, as the forming pressures were higher than 5.0 MPa.


2019 ◽  
Vol 1 (6) ◽  
pp. 235-239
Author(s):  
Sabarinathan K ◽  
Ashwathi R

The growing environmental awareness and Construction waste, is increasing day by day which in turn makes the world in seeking for examining the characteristics of Construction waste and obtaining a solution by using its reliable segments such that it can be used as a raw material and Conservation the natural recourses like Coarse aggregate


Sign in / Sign up

Export Citation Format

Share Document