scholarly journals Effect of temperature in electrical magnitudes of LED and HPS luminaires

Author(s):  
Carolina Brusil ◽  
◽  
Francisco Espín ◽  
Carlos Velásquez

Temperature effects on luminaires is usually referred to light output, that is luminaire efficiency. However, the effect on electrical magnitudes as power, current and third current harmonic is not widely studied. One major technology, Light-emitting- diode (LED) is fast replacing the other types of lighting all over the world, this opens the interrogate of how is temperature affecting LED luminaires development and how different is this effect compared to other technologies. This paper analyses these effects on LED luminaires of different wattage and one high pressure SODIUM luminaire. Luminaires were measure in two different environments, the first stage with a constant temperature-controlled system (±1°C) and the second one without a temperature-controlled system. The tests were performed on three samples of LED luminaires with different power ratings and one sample of SODIUM luminaire. It was found that the third current harmonic is directly related to temperature while power and current are inversely related.

2015 ◽  
Vol 2015 ◽  
pp. 1-4 ◽  
Author(s):  
W. Wang ◽  
Y. Cai ◽  
Y. B. Zhang ◽  
H. J. Huang ◽  
W. Huang ◽  
...  

A parallel and series network structure was introduced into the design of the high-voltage single-chip (HV-SC) light-emitting diode to inhibit the effect of current crowding and to improve the yield. Using such a design, a6.6×5 mm2large area LED chip of 24 parallel stages was demonstrated with 3 W light output power (LOP) at the current of 500 mA. The forward voltage was measured to be 83 V with the same current injection, corresponding to 3.5 V for a single stage. The LED chip’s average thermal resistance was identified to be 0.28 K/W by using infrared thermography analysis.


2017 ◽  
Vol 25 (6) ◽  
pp. 416-422 ◽  
Author(s):  
Clinton J Hayes ◽  
Kerry B Walsh ◽  
Colin V Greensill

Understanding of light-emitting diode lamp behaviour is essential to support the use of these devices as illumination sources in near infrared spectroscopy. Spectral variation in light-emitting diode peak output (680, 700, 720, 735, 760, 780, 850, 880 and 940 nm) was assessed over time from power up and with variation in environmental temperature. Initial light-emitting diode power up to full intensity occurred within a measurement cycle (12 ms), then intensity decreased exponentially over approximately 6 min, a result ascribed to an increase in junction temperature as current is passed through the light-emitting diode. Some light-emitting diodes displayed start-up output characteristics on their first use, indicating the need for a short light-emitting diode ‘burn in’ period, which was less than 24 h in all cases. Increasing the ambient temperature produced a logarithmic decrease in overall intensity of the light-emitting diodes and a linear shift to longer wavelength of the peak emission. This behaviour is consistent with the observed decrease in the IAD Index (absorbance difference between 670 nm and 720 nm, A670–A720) with increased ambient temperature, as measured by an instrument utilising light-emitting diode illumination (DA Meter). Instruments using light-emitting diodes should be designed to avoid or accommodate the effect of temperature. If accommodating temperature, as light-emitting diode manufacturer specifications are broad, characterisation is recommended.


2020 ◽  
Vol 10 (4) ◽  
pp. 1373
Author(s):  
Wei Wang ◽  
Jun Zou ◽  
Qiaoyu Zheng ◽  
Yuefeng Li ◽  
Bobo Yang ◽  
...  

The influences on thermal and optical performances of light emitting diode (LED) bulbs with three different filament arrangements are investigated in detail. The average junction temperature, temperature of the surface of the bulb, and luminous flux of three samples all increased with increasing power. The thermal performance test results show that between the average junction, temperature and power were linear. The junction temperatures of the three samples at a power of 3.5 W were 102.48, 98.46, and 88.88 °C. The optical performance test results revealed that the luminous flux and efficiency in the two vertical filament arrangements were closely related to each other and higher than that of the horizontal filament arrangement. A numerical model of LED filament bulbs was established by the Floefd 17.2 software for analyzing the temperature distribution of the cross section and the gas flow path inside the bulb. The simulation results illustrated that the average temperatures of three samples were 105.88, 101.83, and 96.12 °C. Additionally, the gas flow inside the bulb of the two vertical filament arrangements was subject to forming a thermal cycle during operation work more than that of the horizontal filament arrangement. As a result, the flexible spiral LED filament bulb is feasible as a new light source.


2000 ◽  
Vol 637 ◽  
Author(s):  
Alexei A. Erchak ◽  
Daniel J. Ripin ◽  
Shanhui Fan ◽  
John D. Joannopoulos ◽  
Erich P. Ippen ◽  
...  

AbstractEnhanced light output is observed from a light-emitting diode (LED) structure containing a two-dimensional (2D) photonic crystal. The capture of emitted light into planar waveguide modes reduces the extraction efficiency of LEDs. Here, 2D photonic crystals are utilized to: 1) enhance the extraction of light in the vertical direction from an LED and 2) enhance optical pumping by directly coupling light from a pump laser into the LED structure. Spatially and spectrally-resolved photoluminescence (PL) is used to characterize the enhancements. A 100-fold enhancement in extraction for a single wavelength into the vertical direction is obtained without the photonic crystal penetrating the active material.


2016 ◽  
Vol 41 (4) ◽  
pp. 397-408 ◽  
Author(s):  
MM AlShaafi ◽  
JE Harlow ◽  
HL Price ◽  
FA Rueggeberg ◽  
D Labrie ◽  
...  

SUMMARY Recently, “budget” dental light-emitting diode (LED)–based light-curing units (LCUs) have become available over the Internet. These LCUs claim equal features and performance compared to LCUs from major manufacturers, but at a lower cost. This study examined radiant power, spectral emission, beam irradiance profiles, effective emission ratios, and the ability of LCUs to provide sustained output values during the lifetime of a single, fully charged battery. Three examples of each budget LCU were purchased over the Internet (KY-L029A and KY-L036A, Foshan Keyuan Medical Equipment Co, and the Woodpecker LED.B, Guilin Woodpecker Medical Instrument Co). Major dental manufacturers provided three models: Elipar S10 and Paradigm (3M ESPE) and the Bluephase G2 (Ivoclar Vivadent). Radiant power emissions were measured using a laboratory-grade thermopile system, and the spectral emission was captured using a spectroradiometer system. Irradiance profiles at the tip end were measured using a modified laser beam profiler, and the proportion of optical tip area that delivered in excess of 400 mW/cm2 (termed the effective emission ratio) was displayed using calibrated beam profile images. Emitted power was monitored over sequential exposures from each LCU starting at a fully charged battery state. The results indicated that there was less than a 100-mW/cm2 difference between manufacturer-stated average tip end irradiance and the measured output. All the budget lights had smaller optical tip areas, and two demonstrated lower effective emission ratios than did the units from the major manufacturers. The budget lights showed discontinuous values of irradiance over their tip ends. One unit delivered extremely high output levels near the center of the light tip. Two of the budget lights were unable to maintain sustained and stable light output as the battery charge decreased with use, whereas those lights from the major manufacturers all provided a sustained light output for at least 100 exposures as well as visual and audible indications that the units required recharging.


2007 ◽  
Vol 8 (2) ◽  
pp. 35-42 ◽  
Author(s):  
Fabrício Aulo Ogliari ◽  
Ulisses Bastos Campregher ◽  
Susana Maria Werner Samuel ◽  
Carmen Beatriz Borges Fortes ◽  
Alberth David Correa Medina ◽  
...  

Abstract Aim The purpose of this study was to evaluate the effectiveness of three commercially available light emitting diode (LED) light curing units (LCU) (Elipar FreeLight - 3M ESPE; UltraLume LED2 - Ultradent; and Single V - BioArt) for polymerizing Z250-A3 composite (3M ESPE) using Knoop hardness, polymerization depth, and flexural strength properties. Methods and Materials The XL 2500 (3M ESPE) LCU, which is a conventional halogen unit, was used as a control. In all cases the curing time was 20 seconds. Hardness was determined 24 hours after composite cure for 10 samples of 8 mm diameter and 2 mm height for each LCU tested. Samples were stored dry in a lightproof container prior to testing. The depth of cure of the composite was measured immediately after composite polymerization for each LCU using three samples 4 mm in diameter and 6 mm in height. Flexural strength was determined for five samples 24 hours after immersion in distilled water at 37°C. Each sample measured 25 mm in length, 2 mm in width, and 2 mm in height for each LCU tested. Conclusion The results were treated statistically for comparison of the LCUs. In all cases the results obtained by LED LCUs were not different or were higher than a conventional halogen LCU. Clinical Significance Second generation LED LCUs were as effective as/or more effective than a halogen LCU for polymerization of the used composite. The present study shows second generation LEDs have the potential to replace halogen LCUs. Citation Campregher UB, Samuel SMW, Fortes CBB, Medina ADC, Collares FMC, Ogliari FA. Effectiveness of Second-generation Light-emitting Diode (LED) Light Curing Units. J Contemp Dent Pract 2007 February;(8)2:035-042.


2020 ◽  
Vol 15 (4) ◽  
pp. 425-431
Author(s):  
B. M. Chaya ◽  
Prasant Kumar Pattnaik ◽  
K. Narayan

The effects of anti-reflective coatings (ARC) on organic light emitting diode (OLED) optical characteristics are reported in this paper. The light output produced from the OLED is not 100%. But the emitted light is trapped due to various Modes. The losses at the glass air substrate interfaces of an OLED are addressed in this work. The Anti-Reflective coatings increase the light output by reducing OLED reflections at the interface between glass and air. The Finite Difference Time Domain (FDTD) method and the Fresnel theory have been used to design the device and study the effects on OLED of the Single Layer Anti-Reflective Coating (SLAR) and Double Layer Anti-Reflective Coating (DLAR). The thicknesses and refractive indices of the layers of the anti-reflective coatings were optimized. We also compared the light out coupling power efficiency of the SLAR coated OLED with that of an OLED with a DLAR coating and also with Conventional OLED. The results show that the enhancement in light output efficiency of the DLAR coated OLED was slightly higher than that of the SLAR coated OLED.


Sign in / Sign up

Export Citation Format

Share Document