scholarly journals DEVELOPMENT OF CONCEPTUAL TECHNICAL SOLUTIONS AND METHODS OF THEIR IMPLEMENTATION DURING THE DESIGN OF A DUST COAL STEAM GENERATOR OF SUPER-SUPER CRITICAL PARAMETERS OF STEAM 28 MPA / 600 °C/600 °C FOR 300 MW ENERGY UNIT. PART 3.

Author(s):  
B.B. Rokhman ◽  
N.I. Dunayevska ◽  
V.G. Vifatnyuk

In the third part of this article, an attempt is made to expand the range of regulation of the steam generator load from 40% to 100% by injecting recirculating flue gases taken after the water economizer into the middle radiation part of the furnace. For this, verification thermal calculations of the boiler were carried out when burning ДГ-100 coal in a wide range of variation of the recirculation coefficient Krec = 10−20% at loads of 40% and 50% of the nominal. It is shown that: a) at a load of 50%, recirculation of flue gases Krec = 13 % leads to a drop in the steam temperature along the primary path, due to which the maximum wall temperatures of all-welded screens decrease, which makes it possible to reduce the cost of boiler manufacture by reducing the use of expensive austenitic steels by 116.3 t; b) to ensure a live steam temperature of 600 °С at a load of 40%, it is necessary that Krec = 12%. This leads to a rise in the cost of the boiler in comparison with the load of 50% due to the use of steel grade 10X16N16V2MBR in the manufacture of ceiling screens. Bibl. 3, Fig. 17, Tab. 4.

Author(s):  
B.B. Rokhman ◽  
N.I. Dunaevska ◽  
V.G. Vifatnyuk

Increasing efficiency of power plant unit, reducing fuel costs, and CO2, NOx and SOx emissions can be achieved by increasing the pressure and temperature of the steam. Analysis carried out for boilers designed for supercritical steam parameters, showed that the increase in pressure and temperature is directly related to the stresses arising in the metal of the superheater, and, consequently, with the need of using high-temperature alloys. Thus, steam generators can be conventionally divided into three groups: supercritical (SC), super supercritical (SSC) and ultra supercritical (USC). The efficiency of the power units of the USC is 3–4 % higher than the efficiency of the SC units, and the efficiency of the power units of the USC is 6–8 % higher than the efficiency of the SC units. For the manufacture of USC boilers, steels based on nickel alloys are required, which are mainly at the stage of development and testing, while for the production of SSC steam generator, steels are manufactured on an industrial scale, therefore, currently, the best option is the construction of SSC power unites. The first part of the work describes the calculation method, the algorithm and the program with the help of which the design and verification thermal calculations of the SSC 28 MPa/600 °С/600 °С were carried out for a 300 MW power unit at rated loads. Two designs of vortex burners (coiled-blade and blade-blade) with a thermal power of 34.471 MJ/s and productivity (for coal) of 5902 kg/h have been developed. Original technical solutions have been developed to improve the reliability of the live steam output stage and to reduce the surface of the first stage of the reheater. Bibl. 5, Fig. 4, Tab. 1.


Author(s):  
Nataliya Stoyanets ◽  
◽  
Mathias Onuh Aboyi ◽  

The article defines that for the successful implementation of an innovative project and the introduction of a new product into production it is necessary to use advanced technologies and modern software, which is an integral part of successful innovation by taking into account the life cycle of innovations. It is proposed to consider the general potential of the enterprise through its main components, namely: production and technological, scientific and technical, financial and economic, personnel and actual innovation potential. Base for the introduction of technological innovations LLC "ALLIANCE- PARTNER", which provides a wide range of support and consulting services, services in the employment market, tourism, insurance, translation and more. To form a model of innovative development of the enterprise, it is advisable to establish the following key aspects: the system of value creation through the model of cooperation with partners and suppliers; creating a value chain; technological platform; infrastructure, determine the cost of supply, the cost of activities for customers and for the enterprise as a whole. The system of factors of influence on formation of model of strategic innovative development of the enterprise is offered. The expediency of the cost of the complex of technological equipment, which is 6800.0 thousand UAH, is economically calculated. Given the fact that the company plans to receive funds under the program of socio-economic development of Sumy region, the evaluation of the effectiveness of the innovation project, the purchase of technological equipment, it is determined that the payback period of the project is 3 years 10 months. In terms of net present value (NPV), the project under study is profitable. The project profitability index (PI) meets the requirements for a positive decision on project implementation> 1.0. The internal rate of return of the project (IRR) also has a positive value of 22% because it exceeds the discount rate.


Author(s):  
Сергей Борисович Казаков ◽  
Дмитрий Михайлович Шишов ◽  
Антон Игоревич Ларин ◽  
Александр Петрович Николаев ◽  
Аза Валерьевна Писарева

В статье представлен обзор существующих технических решений в сфере мониторинга и предотвращения апноэ во сне. Произведён анализ существующих аппаратов для предотвращения апноэ, который показал, что на рынке присутствует большое количество импортных моделей, однако они имеют довольно высокую цену. Разработанный нами Российский аналог проектируемого аппарата, при схожих характеристиках, будет иметь более привлекательную цену, чем у импортных приборов. Интегрирование датчика влажности в персональную маску пациента даёт возможность отслеживать остановки дыхания пациента во время сна, и тем самым включать процесс принудительной подачи дыхательной смеси именно в тот момент, когда она необходима для устранения патологии. Целью научной работы является разработка конструкции прибора и создание алгоритма программы для управления аппарата искусственной вентиляции лёгких для предотвращения апноэ во сне. Показана разработка структуры устройства аппарата. Подобран компрессор и датчик влажности с обоснованными характеристиками для создания аппарата, а также основные элементы. Разработана конструкция корпуса аппарата и разработана компоновка. Выполнено технико-экономическое обоснование разработки аппаратно-программного комплекса для предотвращения апноэ во сне. Показано, что себестоимость готового изделия достаточно конкурентна The article presents an overview of existing technical solutions in the field of monitoring and prevention of sleep apnea. An analysis of existing devices for preventing apnea was made, which showed that there are a large number of imported models on the market, but they have a fairly high price. The Russian analog of the designed device developed by us, with similar characteristics, will have a more attractive price than that of imported devices. The integration of the humidity sensor into the patient's personal mask makes it possible to monitor the patient's breathing stops during sleep, and thus enable the process of forced delivery of the respiratory mixture at the exact moment when it is necessary to eliminate the pathology. The purpose of the research is to develop the device design and create a program algorithm for controlling the artificial lung ventilation device to prevent sleep apnea. The development of the device structure is shown. The compressor and humidity sensor with reasonable characteristics for creating the device, as well as the main elements are selected. The design of the device body and its layout were developed. A feasibility study for the development of a hardware and software system for preventing sleep apnea has been completed. It is shown that the cost of the finished product is quite competitive


2020 ◽  
Vol 67 (1) ◽  
pp. 28-34
Author(s):  
Aleksandr V. Vinogradov ◽  
Aleksey V. Bukreev

When repairing and replacing electrical wiring in enterprises, the main difficulty is the lack or poor quality of documentation, plans for conductors laying. Distinguishing wires (cables) and their cores by the color of the shells or using tags attached to the ends is difficult if the shells have the same color and there are no tags. Devices and technical solutions used to identify wires and cables do not allow recognizing conductors without breaking the electrical circuit, removing insulation, and de-energizing the network. Searching for the right conductor is a time-consuming operation. (Research purpose) The research purpose is developing a new microcontroller device for identifying wires using an acoustic signal. (Materials and methods) Literature sources has been searched for devices for conductors identifying. (Results and discussion) The article proposes a method that involves feeding an acoustic signal to a wire at one point and capturing it at another, in order to recognize the desired wire. The article presents results of comparison of the developed microcontroller device for identifying conductors using an acoustic signal with known devices and methods for conductors recognizing. (Conclusions) The article reveals the shortcomings of existing methods and means of identifying wires and cables. Authors performed a theoretical calculation of the sound pressure in the conductor at a given distance. The article presents the calculation of speed of acoustic waves in conductors with different types of insulation. Authors designed a microcontroller device for identifying conductors using an acoustic signal and tested it. It was determined that the device increases the safety of work, reduces the cost of operating internal wiring and identification time; eliminates the violation of wire insulation, the need to disable electrical receivers. The convergence of theoretical calculations and experimental data was shown.


2021 ◽  
Vol 1 ◽  
pp. 131-140
Author(s):  
Federica Cappelletti ◽  
Marta Rossi ◽  
Michele Germani ◽  
Mohammad Shadman Hanif

AbstractDe-manufacturing and re-manufacturing are fundamental technical solutions to efficiently recover value from post-use products. Disassembly in one of the most complex activities in de-manufacturing because i) the more manual it is the higher is its cost, ii) disassembly times are variable due to uncertainty of conditions of products reaching their EoL, and iii) because it is necessary to know which components to disassemble to balance the cost of disassembly. The paper proposes a methodology that finds ways of applications: it can be applied at the design stage to detect space for product design improvements, and it also represents a baseline from organizations approaching de-manufacturing for the first time. The methodology consists of four main steps, in which firstly targets components are identified, according to their environmental impact; secondly their disassembly sequence is qualitatively evaluated, and successively it is quantitatively determined via disassembly times, predicting also the status of the component at their End of Life. The aim of the methodology is reached at the fourth phase when alternative, eco-friendlier End of Life strategies are proposed, verified, and chosen.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1486
Author(s):  
Eugene B. Caldona ◽  
Ernesto I. Borrego ◽  
Ketki E. Shelar ◽  
Karl M. Mukeba ◽  
Dennis W. Smith

Many desirable characteristics of polymers arise from the method of polymerization and structural features of their repeat units, which typically are responsible for the polymer’s performance at the cost of processability. While linear alternatives are popular, polymers composed of cyclic repeat units across their backbones have generally been shown to exhibit higher optical transparency, lower water absorption, and higher glass transition temperatures. These specifically include polymers built with either substituted alicyclic structures or aromatic rings, or both. In this review article, we highlight two useful ring-forming polymer groups, perfluorocyclobutyl (PFCB) aryl ether polymers and ortho-diynylarene- (ODA) based thermosets, both demonstrating outstanding thermal stability, chemical resistance, mechanical integrity, and improved processability. Different synthetic routes (with emphasis on ring-forming polymerization) and properties for these polymers are discussed, followed by their relevant applications in a wide range of aspects.


2019 ◽  
Vol 11 (8) ◽  
pp. 2400 ◽  
Author(s):  
Karthikeyan Mariappan ◽  
Deyi Zhou

Agriculture is the main sources of income for humans. Likewise, agriculture is the backbone of the Indian economy. In India, Tamil Nadu regional state has a wide range of possibilities to produce all varieties of organic products due to its diverse agro-climatic condition. This research aimed to identify the economics and efficiency of organic farming, and the possibilities to reduce farmers’ suicides in the Tamil Nadu region through the organic agriculture concept. The emphasis was on farmers, producers, researchers, and marketers entering the sustainable economy through organic farming by reducing input cost and high profit in cultivation. A survey was conducted to gather data. One way analysis of variance (ANOVA) has been used to test the hypothesis regards the cost and profit of rice production. The results showed that there was a significant difference in profitability between organic and conventional farming methods. It is very transparent that organic farming is the leading concept of sustainable agricultural development with better organic manures that can improve soil fertility, better yield, less input cost and better return than conventional farming. The study suggests that by reducing the cost of cultivation and get a marginal return through organic farming method to poor and small scale farmers will reduce socio-economic problems such as farmers’ suicides in the future of Indian agriculture.


2021 ◽  
Vol 48 (4) ◽  
pp. 3-3
Author(s):  
Ingo Weber

Blockchain is a novel distributed ledger technology. Through its features and smart contract capabilities, a wide range of application areas opened up for blockchain-based innovation [5]. In order to analyse how concrete blockchain systems as well as blockchain applications are used, data must be extracted from these systems. Due to various complexities inherent in blockchain, the question how to interpret such data is non-trivial. Such interpretation should often be shared among parties, e.g., if they collaborate via a blockchain. To this end, we devised an approach codify the interpretation of blockchain data, to extract data from blockchains accordingly, and to output it in suitable formats [1, 2]. This work will be the main topic of the keynote. In addition, application developers and users of blockchain applications may want to estimate the cost of using or operating a blockchain application. In the keynote, I will also discuss our cost estimation method [3, 4]. This method was designed for the Ethereum blockchain platform, where cost also relates to transaction complexity, and therefore also to system throughput.


Materials ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 181
Author(s):  
Roberto De Santis ◽  
Teresa Russo ◽  
Julietta V. Rau ◽  
Ida Papallo ◽  
Massimo Martorelli ◽  
...  

A wide range of materials has been considered to repair cranial defects. In the field of cranioplasty, poly(methyl methacrylate) (PMMA)-based bone cements and modifications through the inclusion of copper doped tricalcium phosphate (Cu-TCP) particles have been already investigated. On the other hand, aliphatic polyesters such as poly(ε-caprolactone) (PCL) and polylactic acid (PLA) have been frequently investigated to make scaffolds for cranial bone regeneration. Accordingly, the aim of the current research was to design and fabricate customized hybrid devices for the repair of large cranial defects integrating the reverse engineering approach with additive manufacturing, The hybrid device consisted of a 3D additive manufactured polyester porous structures infiltrated with PMMA/Cu-TCP (97.5/2.5 w/w) bone cement. Temperature profiles were first evaluated for 3D hybrid devices (PCL/PMMA, PLA/PMMA, PCL/PMMA/Cu-TCP and PLA/PMMA/Cu-TCP). Peak temperatures recorded for hybrid PCL/PMMA and PCL/PMMA/Cu-TCP were significantly lower than those found for the PLA-based ones. Virtual and physical models of customized devices for large cranial defect were developed to assess the feasibility of the proposed technical solutions. A theoretical analysis was preliminarily performed on the entire head model trying to simulate severe impact conditions for people with the customized hybrid device (PCL/PMMA/Cu-TCP) (i.e., a rigid sphere impacting the implant region of the head). Results from finite element analysis (FEA) provided information on the different components of the model.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Téguewindé Sawadogo ◽  
Njuki Mureithi

Having previously verified the quasi-steady model under two-phase flow laboratory conditions, the present work investigates the feasibility of practical application of the model to a prototypical steam generator (SG) tube subjected to a nonuniform two-phase flow. The SG tube vibration response and normal work-rate induced by tube-support interaction are computed for a range of flow conditions. Similar computations are performed using the Connors model as a reference case. In the quasi-steady model, the fluid forces are expressed in terms of the quasi-static drag and lift force coefficients and their derivatives. These forces have been measured in two-phase flow over a wide range of void fractions making it possible to model the effect of void fraction variation along the tube span. A full steam generator tube subjected to a nonuniform two-phase flow was considered in the simulations. The nonuniform flow distribution corresponds to that along a prototypical steam-generator tube based on thermal-hydraulic computations. Computation results show significant and important differences between the Connors model and the two-phase flow based quasi-steady model. While both models predict the occurrence of fluidelastic instability, the predicted pre-instability and post instability behavior is very different in the two models. The Connors model underestimates the flow-induced negative damping in the pre-instability regime and vastly overestimates it in the post instability velocity range. As a result the Connors model is found to underestimate the work-rate used in the fretting wear assessment at normal operating velocities, rendering the model potentially nonconservative under these practically important conditions. Above the critical velocity, this model largely overestimates the work-rate. The quasi-steady model on the other hand predicts a more moderately increasing work-rate with the flow velocity. The work-rates predicted by the model are found to be within the range of experimental results, giving further confidence to the predictive ability of the model. Finally, the two-phase flow based quasi-steady model shows that fluidelastic forces may reduce the effective tube damping in the pre-instability regime, leading to higher than expected work-rates at prototypical operating velocities.


Sign in / Sign up

Export Citation Format

Share Document