scholarly journals THERMOHYDRAULIC DISTRIBUTION IN TWISTED MICRO HEAT EXCHANGERS MOUNTED IN ANNULAR CHANNELS

Author(s):  
V.O. Tuz ◽  
N.L. Lebed

The design of twisted heat exchangers provides a possibility to compensate for temperature and mechanical stresses thus ensuring continuous and failsafe operation of the equipment. The authors use fins and multiturn pipe bundles to reduce the mass and size characteristics of the heat exchangers. Such design significantly complicates the calculating method. The main aspect of swirling flows is the presence of radial and axial pressure gradients. When vapor or gas flows swirl, the flow velocity near the walls is much higher than the average values, while at the axis the flow is significantly slower and in some cases its values can become negative. The liquid flowing near the axis has a notably lower pressure, which can cause it to boil. Considerable radial gradients of axial and rotational speed, as well as static pressure contribute to turbulent pulsations. Given that the working fluid flows along a helical line, the flow in the near-wall area is similar to the flow around curved surfaces. The study analyses how the pipe bundle geometry impacts hydraulic distribution and scrutinizes the main components of pressure loss in the twisted heat exchanger. The analysis allowed simplifying the method of hydraulic calculation of the multiturn twisted heat exchanger. Solving the outer heat transfer and hydrodynamics problem for the twisted heat exchanger allowed determining the effect of the main factors and the relationship between the parameters of the coolant and the working mass on the distribution values. The paper presents the equations for determining geometry of the pipes with different coiling diameters, as well as the equation for finding hydraulic distribution in individual pipes in the layers of the pipe bundle. The obtained results can help increase the accuracy of thermal calculation. The authors propose to use sectioning of twisted heat exchangers as a way to reduce hydraulic distribution. Bibl. 12, Fig. 1.

2015 ◽  
Vol 76 (11) ◽  
Author(s):  
Muhammad Nuriyadi ◽  
Sumeru Sumeru ◽  
Henry Nasution

This study presents the effect of liquid-suction heat exchangers (LSHX) sub-cooler in a freezer. The LSHX sub-cooler is a method to increase the cooling capacity of the evaporator by lowering temperature at the condenser outlet. The decrease in temperature of the condenser outlet will cause a decrease in the quality refrigerant entering the evaporator. The lower the quality of the refrigerant entering the evaporator, the higher the cooling capacity produced by the evaporator. The LSHX sub-cooler utilizes a heat exchanger to transfer heat from the outlet of the condenser (liquid line) to the suction of the compressor. In the present study, three different LSHX sub-coolers in the freezer with cabin temperature settings of 0, -10 and -20oC were investigated. The results showed that the lowest and the highest of effectiveness of the heat exchanger were 0.28 and 0.58, respectively. The experimental results also showed that EER reduction is occurred at the cabin temperature setting of 0oC and -10oC, whereas the EER improvements were always occurred at the cabin temperature settings of -20oC.


2021 ◽  
Author(s):  
praveen math

Abstract Shell and Tube heat exchangers are having special importance in boilers, oil coolers, condensers, pre-heaters. They are also widely used in process applications as well as the refrigeration and air conditioning industry. The robustness and medium weighted shape of Shell and Tube heat exchangers make them well suited for high pressure operations. The aim of this study is to experiment, validate and to provide design suggestion to optimize the shell and tube heat exchanger (STHE). The heat exchanger is made of acrylic material with 2 baffles and 7 tubes made of stainless steel. Hot fluid flows inside the tube and cold fluid flows over the tube in the shell. 4 K-type thermocouples were used to read the hot and cold fluids inlet and outlet temperatures. Experiments were carried out for various combinations of hot and cold water flow rates with different hot water inlet temperatures. The flow conditions are limited to the lab size model of the experimental setup. A commercial CFD code was used to study the thermal and hydraulic flow field inside the shell and tubes. CFD methodology is developed to appropriately represent the flow physics and the procedure is validated with the experimental results. Turbulent flow in tube side is observed for all flow conditions, while the shell side has laminar flow except for extreme hot water temperatures. Hence transition k-kl-omega model was used to predict the flow better for transition cases. Realizable k- epsilon model with non-equilibrium wall function was used for turbulent cases. Temperature and velocity profiles are examined in detail and observed that the flow remains almost uniform to the tubes thus limiting heat transfer. Approximately 2/3 rd of the shell side flow does not surround the tubes due to biased flow contributing to reduced overall heat transfer and increased pressure loss. On the basis of these findings an attempt has been made to enhance the heat transfer by inducing turbulence in the shel l side flow. The two baffles were rotated in opposite direction to each other to achieve more circulation in the shell side flow and provide more contact with tube surface. Various positions of the baffles were simulated and studied using CFD analysis and th e results are summarized with respect to heat transfer and pressure loss.


2021 ◽  
Vol 945 (1) ◽  
pp. 012058
Author(s):  
Sayshar Ram Nair ◽  
Cheen Sean Oon ◽  
Ming Kwang Tan ◽  
S.N. Kazi

Abstract Heat exchangers are important equipment with various industrial applications such as power plants, HVAC industry and chemical industries. Various fluids that are used as working fluid in the heat exchangers such as water, oil, and ethylene glycol. Researchers have conducted various studies and investigations to improve the heat exchanger be it from material or heat transfer point of view. There have been attempts to create mixtures with solid particles suspended. This invention had some drawbacks since the pressure drop was compromised, on top of the occurrence of sedimentation or even erosion, which incurs higher maintenance costs. A new class of colloidal suspension fluid that met the demands and characteristics of a heat exchanger was then created. This novel colloidal suspension mixture was then and now addressed as “nanofluid”. In this study, the usage of functionalized graphene nanoplatelet (GNP) nanofluids will be studied for its thermal conductivity within an annular conduit with angled fins, which encourage swirling flows. The simulation results for the chosen GNP nanofluid concentrations have shown an enhancement in thermal conductivity and heat transfer coefficient compared to the corresponding base fluid thermal properties. The data from this research is useful in industrial applications which involve heat exchangers with finned tubes.


2018 ◽  
Author(s):  
Javier Bonilla

Many commercial solar thermal power plants rely on indirect thermal storage systems in order to provide a stable and reliable power supply, where the working fluid is commonly thermal oil and the storage fluid is molten salt. The thermal oil - molten salt heat exchanger control strategies, to charge and discharge the thermal storage system, strongly affect the performance of the whole plant. Shell-and-tube heat exchangers are the most common type of heat exchangers used in these facilities. With the aim of developing advanced control strategies accurate and fast dynamic models of shell-and-tube heat exchangers are essential. For this reason, several shell-and-tube heat exchanger models with different degrees of complexity have been studied, analyzed and validated against experimental data from the CIEMAT-PSA molten salt test loop for thermal energy systems facility. Simulation results are compared in steady-state as well as transient predictions in order to determine the required complexity of the model to yield accurate results.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2737
Author(s):  
Francesca Ceglia ◽  
Adriano Macaluso ◽  
Elisa Marrasso ◽  
Maurizio Sasso ◽  
Laura Vanoli

Improvements in using geothermal sources can be attained through the installation of power plants taking advantage of low and medium enthalpy available in poorly exploited geothermal sites. Geothermal fluids at medium and low temperature could be considered to feed binary cycle power plants using organic fluids for electricity “production” or in cogeneration configuration. The improvement in the use of geothermal aquifers at low-medium enthalpy in small deep sites favours the reduction of drilling well costs, and in addition, it allows the exploitation of local resources in the energy districts. The heat exchanger evaporator enables the thermal heat exchange between the working fluid (which is commonly an organic fluid for an Organic Rankine Cycle) and the geothermal fluid (supplied by the aquifer). Thus, it has to be realised taking into account the thermodynamic proprieties and chemical composition of the geothermal field. The geothermal fluid is typically very aggressive, and it leads to the corrosion of steel traditionally used in the heat exchangers. This paper analyses the possibility of using plastic material in the constructions of the evaporator installed in an Organic Rankine Cycle plant in order to overcome the problems of corrosion and the increase of heat exchanger thermal resistance due to the fouling effect. A comparison among heat exchangers made of commonly used materials, such as carbon, steel, and titanium, with alternative polymeric materials has been carried out. This analysis has been built in a mathematical approach using the correlation referred to in the literature about heat transfer in single-phase and two-phase fluids in a tube and/or in the shell side. The outcomes provide the heat transfer area for the shell and tube heat exchanger with a fixed thermal power size. The results have demonstrated that the plastic evaporator shows an increase of 47.0% of the heat transfer area but an economic installation cost saving of 48.0% over the titanium evaporator.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Mirmanto Mirmanto ◽  
I Made Adi Sayoga ◽  
Zulkarnain Zulkarnain

ABSTRACTDue to population growth, industry advance and rapid development, fresh and comfortable air may be difficult to get. Conditioning the air to get comfort environment may be a basic demand for people, but the prices of the device and its operation for this purpose are expensive. This research tries to solve this problem but it is just only to know the capability of the heat exchanger  to transfer/ absorb heat and is not to cool the room to be below the ambient temperature. The working fluid used was clean water and the heat exchangers employed were parallel and serpentine which were made of copper pipes with a diameter of 1/4 inch and 1/2 inch (for the header). The volumetric flow rates used were 300 ml/minutes, 400 ml/minutes and 500 ml/minutes. While the heat that should be absorbed by the water from the room is 50 W, 100 W and 150 W. The results show that the effect of volumetric flow rate on heat exchanger performance and room temperature is insignificant. From the pressure drop results, the parallel pipe heat exchanger has lower pressure drops while the serpentine has higher pressure drops. 


2021 ◽  
Vol 24 (7) ◽  
pp. 9-19
Author(s):  
Igor Kravchenko ◽  
Yurii Mitikov ◽  
Yurii Torba ◽  
Mykhailo Vasin ◽  
Oleksandr Zhyrkov

The energy efficiency of new technical developments is a critical issue. It should be noted that today the focus in this issue has seen a major shift to the maximum use of renewable energy sources. The purpose of this research is to reduce the weight of helium heat exchangers of the fuel tank pressurisation systems in modern rocket propulsion systems that use fuel components like liquid oxygen and kerosene-type fuel. This is the first time that the question has been raised about the possibility and advisability of increasing the temperature of helium at the heat exchanger inlet without the use of additional resources. The paper addresses the use of the waste (“low-potential”) heat and ”industrial wastes” present in propulsion systems. Basic laws of complex heat exchange and the retrospective review of applicable heat exchanger structures are applied as a research methodology. Two sources of low-potential heat are identified that have been previously used in the rocket engine building in an inconsistent and piecemeal manner to obtain and heat the pressurisation working fluid. These are the rammedair pressurisation during the motion of the rocket carrier in the atmosphere, and the tank pressurisation as a result of boiling of the top layer of oxidiser which is on the saturation line. This is the first time that the advisability has been substantiated of increasing the temperature of the working fluid at the heat exchanger inlet, first of all due to the use of the low-potential heat. This is also the first time that unemployed sources of low-potential heat and “industrial wastes” are found in modern deep throttling propulsion systems. These are the high-boiling-point fuel in the tank, behind the highpressure pump, at the exit of the combustion chamber cooling duct, and also the fuel tank structures, and the engine plume. A possibility is proved, and an advisability demonstrated of their implementation to increase the efficiency of pressurisation system heat exchangers. This is the first time that the methodology of combustion chamber cooling analysis has been proposed to be adopted for the heating of heat exchanger by the engine plume. This is the first time that a classification of waste heat sources has been developed which can be used to increase the pressurisation working fluid temperature. The identified reserves help to increase the efficiency of the helium heat exchangers of the tank pressurisation systems in the propulsion systems


2022 ◽  
Author(s):  
Akshay Bharadwaj Krishna ◽  
Kaiyuan Jin ◽  
Portnovo Ayyaswamy ◽  
Ivan Catton ◽  
Timothy S. Fisher

Abstract Heat exchangers play a critical role in supercritical CO2 Brayton cycles by providing necessary waste heat recovery. Supercritical CO2 thermal cycles potentially achieve higher energy density and thermal efficiency operating at elevated temperatures and pressures. Accurate and computationally efficient estimation of heat exchanger performance metrics at these conditions is important for the design and optimization of sCO2 systems and thermal cycles. In this paper (Part II), a computationally efficient and accurate numerical model is developed to predict the performance of STHXs. Highly accurate correlations reported in Part I of this study are utilized to improve the accuracy of performance predictions, and the concept of volume averaging is used to abstract the geometry and reduce computation time. The numerical model is validated by comparison with CFD simulations and provides high accuracy and significantly lower computation time compared to existing numerical models. A preliminary optimization study is conducted and the advantage of using supercritical CO2 as a working fluid for energy systems is demonstrated.


1980 ◽  
Author(s):  
H. W. Carpenter ◽  
J. Campbell ◽  
L. H. Russell ◽  
D. E. Wright

High-temperature, coal-fired combustors with ceramic heat exchangers were designed for CCGT systems. The objective in evaluating CCGT systems is to convert U.S. coal to electricity with higher efficiency. Higher temperatures are required to accomplish this goal and ceramic heat exchanger surfaces allow the use of working fluid temperatures to 2500 F and higher. The results of a comprehensive government study are described in which an atmospheric fluidized bed and cyclone fired combustor/heat exchanger were designed for operation at 1750 and 2250 F.


Author(s):  
W. T. Bakker ◽  
D. Kotchick

Utilizing dirty fuels such as coal in gas turbine engines requires that heat input to the cycle working fluid occur through a heat exchanger. For high cycle efficiencies such a heat exchanger must operate in the 700–1400 KPA, 1100–1200°C (100–200 psi, 2000–2200°F) range. In this temperature range, ceramic heat exchangers are required. Ceramic heat exchangers that can operate in this regime have been under development for several years on a very modest scale. These programs are briefly reviewed. Major material issues are reviewed and the status of each is presented. Mechanical reliability and joining technology have been successfully demonstrated in short term tests. Long-term durability and the manufacturing technology to produce large scale components reproducibly remains to be demonstrated in the future.


Sign in / Sign up

Export Citation Format

Share Document