scholarly journals A Preisach Model for Monotonic Tension Response of Structural Mild Steel with Damage

Author(s):  
Petar Knežević ◽  
Dragoslav Šumarac ◽  
Zoran Perović ◽  
Ćemal Dolićanin ◽  
Zijah Burzić

This paper presents the new type of Preisach model that describes the elastoplastic behavior of structural mild steel under axial monotonic tension load with damage. Newly developed model takes into account elastic region, horizontal yield plateau, plastic hardening region, and softening region due to material damage under tension. In order to study the monotonic behavior of structural mild steel and find suitable material properties for the model, monotonic axial tensile tests up to the failure are carried out. Tests are conducted on specimens of the three most common types of European structural steel S235, S275, and S355. The basis of the model represents a mathematical description of material single crystal monotonic axial behavior. In the multilinear mechanical model, a drop in stress, after achieving ultimate stress under tension is achieved by a negative stiffness element. The good agreement with experimental results is accomplished by parallel connection of infinitely many single crystal elements, forming the polycrystalline model. The model represents a good solution for common engineering practice due to its geometrical representation in form of Preisach triangle.

2016 ◽  
Vol 258 ◽  
pp. 294-297
Author(s):  
Pietro Giovanni Luccarelli ◽  
Stefano Foletti ◽  
Garrett Pataky ◽  
Huseyin Sehitoglu

The behavior of a Ni-based superalloy, Haynes 230, was investigated at macro and micro scale level by means of a Crystal Plasticity (CP) model implemented in an open source Finite Element code, Warp3D. Single Crystal and polycrystalline specimens have been experimentally characterized with Digital Image Correlation (DIC) to identify the local strain field evolution. The results of single crystal’s tensile tests were used to obtain an estimation of the constitutive model parameters. Then a polycrystalline model, reproducing a tensile test with loading/unloading steps, was created starting from the microstructural data obtained with EBSD (electron back-scatter diffraction), which allowed the identification of grains geometry and orientations. The polycrystalline simulations were used to verify the prediction of the CP model over the experiment. The results of this study show that the comparison between experiments and numerical analysis is in good agreement on both global and local scale levels.


2005 ◽  
Vol 488-489 ◽  
pp. 453-456 ◽  
Author(s):  
Shi Hong Zhang ◽  
Yong Chao Xu ◽  
G. Palumbo ◽  
S. Pinto ◽  
Luigi Tricarico ◽  
...  

Comparing the formability with each other, extrusion and various rolling experiments were carried out to make fine-grained AZ31 Mg sheets, and uni-axial tensile tests were carried out at different strain rates and temperatures to investigate the effect of different variables. A warm deep drawing tool setup with heating elements, which were distributed under the die surface and inside the blank holder, was designed and manufactured, and deep drawing was performed. Extruded Mg alloy AZ31 sheets exhibit the best deep drawing ability when working in the temperature range 250-350°C. Extruded and rolled sheets of 0.8 mm thick were also deep drawn in the lower temperature range 105-170°C,showing good formability and reaching a Limit Drawing Ratio up to 2.6 at 170°C for rolled sheets. At last, a sheet cup 0.4 mm thick was deep drawn successfully at 170 °C.


2021 ◽  
Author(s):  
C. S. JULIET BRINTHA ◽  
S.E JOEMA

Abstract Preferable, third-order nonlinear optical (NLO) single crystal, 3-Nitroanilinium chloride (3NACL) was auspiciously synthesised by slow evaporation technique. The crystal system of synthesised 3NACL crystal is triclinic with centrosymmetric space group was identified by single crystal XRD studies. All the functional groups present in the sample and its respective vibrations are analysed through FTIR analysis. UV-Vis transmittance spectrum revealed that the synthesised material was 83% transmittance and it cut-off wavelength was 276nm. The mechanical stability and thermal property of grown 3NACL crystals were ascertained by Vickers micro hardness analysis and TG/DTA analysis. The intermolecular interaction of the 3NACL was scrutinized by Hirshfeld surface analysis. Dielectric studies revealed that dielectric constant and dielectric loss were high at lower frequency region due to the space charge polarization. Inclusion free 3NACL crystal was used to analyse the Laser damage threshold (LDT) studies and its calculated LDT value was 4.3 GW/cm2. The third-order NLO parameters (β = 7.5472x10− 12 m/W, η2 = 5.6931x10− 19 m2/W, χ3 = 2.9491x10− 13 esu) of the 3NACL material was statutory evaluated by Z-scan studied. Here, β and η2 are positive value due to the saturated absorption and self-focusing effect was observed in open and closed aperture z-scan curve. Above all these findings 3NACL was suitable material for NLO and optoelectronic applications.


2013 ◽  
Vol 690-693 ◽  
pp. 211-217
Author(s):  
Jin Gui Qin ◽  
Fang Yun Lu ◽  
Yu Liang Lin ◽  
Xue Jun Wen

Results of uni-axial tensile loading of three automotive steels at different strain rates (0.0011–3200s-1) are reported here. Quasi-static tensile tests were performed under the strain rate of 1.1×10-3 s-1 using an electromechanical universal testing machine, whereas dynamic tests were carried out under the strain rate in the range of 1100 to 3200 s-1 using a Split Hopkinson Tensile Bar apparatus. Based on the experimental results, the material parameters of widely used Johnson–Cook model which described the strain rate and temperature-dependent of mechanical behaviour were determined. The experiments show that strain-rate hardening is superior to thermal softening: yield stresses, tensile strength, deformation, and energy dissipation increase with the strain rate from quasi-static tests to dynamic tests. The Johnson–Cook model can describe the behaviour of these steels and provides the opportunity to study the material and structural response.


Sensors ◽  
2018 ◽  
Vol 18 (6) ◽  
pp. 1799 ◽  
Author(s):  
Yiming Zhao ◽  
Nong Zhang ◽  
Guangyao Si ◽  
Xuehua Li

Fiber Bragg grating (FBG) measuring bolts, as a useful tool to evaluate the behaviors of steel bolts in underground engineering, can be manufactured by gluing the FBG sensors inside the grooves, which are usually symmetrical cuts along the steel bolt rod. The selection of the cut shape and the glue types could perceivably affect the final supporting strength of the bolts. Unfortunately, the impact of cut shape and glue type on bolting strength is not yet clear. In this study, based on direct tension tests, full tensile load–displacement curves of rock bolts with different groove shapes were obtained and analyzed. The effects of groove shape on the bolt strength were discussed, and the stress redistribution in the cross-section of a rock bolt with different grooves was simulated using ANSYS. The results indicated that the trapezoidal groove is best for manufacturing the FBG bolt due to its low reduction of supporting strength. Four types of glues commonly used for the FBG sensors were assessed by conducting tensile tests on the mechanical testing and simulation system and the static and dynamic optical interrogators system. Using linear regression analysis, the relationship between the reflected wavelength of FBG sensors and tensile load was obtained. Practical recommendations for glue selection in engineering practice are also provided.


1944 ◽  
Vol 11 (4) ◽  
pp. A211-A218
Author(s):  
M. J. Manjoine

Abstract This paper describes the influence of rate of strain and temperature on the yield stresses of mild steel. Tensile tests are reported for room temperature, 200, 400, and 600 C, at rates of strain which vary from 10−8 to 103 per sec. The results of these tensile tests are plotted to show more clearly the effects of strain-aging on the yield stresses and ultimate stress. The comparison of the yield stress at various strain rates permits an analysis of the influence of strain. The conditions necessary for discontinuous yielding are described and compared with test experiences.


2020 ◽  
Vol 184 ◽  
pp. 01004
Author(s):  
L Jayahari ◽  
K Nagachary ◽  
Chandra Ch Sharath ◽  
SM Hussaini

There is an increase in demand for new alloys in aerospace, power generation and nuclear industries. Nickel Based super alloys are known for having distinctive properties which are best suitable for these industries. In this study Nickel based super alloy Inconel 718, is used. Over the many years of intense research and development, these alloys have seen considerable evolution in their properties and efficiency. Behaviour of materials and its forming characteristics can be precisely analysed by determining anisotropic behaviour and mechanical properties. In the present study, tried to analyse the mechanical properties of Inconel 718 like yield strength (Ys), ultimate tensile strength (UTS), strain hardening exponent (n) and strain hardening coefficient (k). Uni-axial tensile tests were conducted on specimens with various parameters such as orientations, temperature and Strain rate. Anisotropy of Inconel 718 alloy was measured based on measurable parameters. The normal anisotropy parameter (f) and planer anisotropy (Δr) were measured and observed that the anisotropy parametres are incresed with the decrease in temperature.


Author(s):  
Toufik Djimaoui ◽  
Mosbah Zidani ◽  
Mohamed Chaouki Nebbar ◽  
T. Abid ◽  
Hichem Farh ◽  
...  

The aim of the present work is to study the evolution of microstructure, texture and mechanical properties during drawing of mild steel wire of type F8Z used in the manufacture of welding electrodes TREFISOUD. It was found that the as received wire has a ferritic-pearlitic microstructure corresponding to an isotopic state (without texture). This microstructure is relatively heterogeneous in the wire section. On the other hand, after strong drawing structure appears relatively homogeneous, throughout the section of the drawn wire. Also the deformation process by drawing causes the hardening of wire as a function of deformation with a reinforcing component of the fiber texture <110> // ND (majority), typical for bcc materials. Characterization methods used in this work is: Optical microscopy (OM), Scanning Electron Microscopy (SEM), the Electron Back Scattered Diffraction EBSD, Vickers microhardness and the tensile tests.


2008 ◽  
Vol 385-387 ◽  
pp. 69-72 ◽  
Author(s):  
Erik Schlangen

This paper describes a method to measure the 3D-microstructure of a material which can be used to perform fracture simulations. A model concrete is made and the 3D structure is obtained with a CTscanner. Uni-axial tensile tests are performed on cylindrical specimens of the model concrete a regular concrete and of a mortar. The model concrete shows more micro-cracking, a more tortuous crack path, a lower tensile load and a less brittle behaviour compared to the mortar and the regular concrete. Furthermore it is found that the opening of the crack is more uniform when the material is more heterogeneous, which results in a more stable fracture.


Sign in / Sign up

Export Citation Format

Share Document