scholarly journals Application of Correction Procedures for Some Systematic Measurement Errors to Rainfall Intensity Data of a Rain Gauge in Budapest

Author(s):  
Tibor Rácz

The rainfall intensity measurement has a 150 years long history. In the first period of data recordings, the siphoned recording precipitation gauge (pluviographs), or siphoned rainfall writers (SRW), later, the tipping bucket gauges (TBG) were widely used. The systematic errors of these instruments resulted in lower intensity values for long periods. These errors were compensated sporadically. Most of the inaccurate data can be found in the high rainfall intensity range. Some of these data can be found in extracted, aggregated versions only, and the original measurement data is no longer available. These kinds of inherited systematic errors can be corrected. The fixing of siphoning error of SRWs and the supplementary correction of long sampling period data of TBG devices can be a suitable method for the elimination of these issues. In this paper, the application of these two methods is shown in a case study to point out the magnitude and effect of these errors on the IDF curves. The case study on the use of the before-mentioned correction procedures is performed on the rainfall data of the Budapest-Belterület (Budapest City) rainfall station, using data series spanning 105 years. These corrections show that the earlier IDF curves can show 5–10% lower intensities, mainly in the short and low return frequency rainfalls. The result of these kinds of corrections can be significant for the climate change investigations or in the re-evaluation of the elder IDF curves.

2007 ◽  
Vol 55 (4) ◽  
pp. 103-111 ◽  
Author(s):  
D. Stransky ◽  
V. Bares ◽  
P. Fatka

Rainfall data are a crucial input for various tasks concerning the wet weather period. Nevertheless, their measurement is affected by random and systematic errors that cause an underestimation of the rainfall volume. Therefore, the general objective of the presented work was to assess the credibility of measured rainfall data and to evaluate the effect of measurement errors on urban drainage modelling tasks. Within the project, the methodology of the tipping bucket rain gauge (TBR) was defined and assessed in terms of uncertainty analysis. A set of 18 TBRs was calibrated and the results were compared to the previous calibration. This enables us to evaluate the ageing of TBRs. A propagation of calibration and other systematic errors through the rainfall–runoff model was performed on experimental catchment. It was found that the TBR calibration is important mainly for tasks connected with the assessment of peak values and high flow durations. The omission of calibration leads to up to 30% underestimation and the effect of other systematic errors can add a further 15%. The TBR calibration should be done every two years in order to catch up the ageing of TBR mechanics. Further, the authors recommend to adjust the dynamic test duration proportionally to generated rainfall intensity.


2020 ◽  
Vol 17 (3) ◽  
pp. 223-228
Author(s):  
S.O. Oyegoke ◽  
A.S. Adebanjo ◽  
H.J. Ododo

With the large inter-annual variability of rainfall in Northern Nigeria, a zone subject to frequent dry spells which often result in severe and widespread droughts, the need for intense study of rainfall and accurate forecast of rainfall intensity duration frequency (IDF) curves cannot be over emphasized. The Intensity Duration Frequency relationship is a mathematical relationship between the rainfall intensity and rainfall duration for given return periods. Using a subset of the network of fifteen continuous auto recording rain gauges available in Northern Nigeria, a total of seven different time durations ranging from 12 minutes to 24 hours were developed for return periods of 2, 5, 10, 25, 50 and 100 years. The maximum data series so obtained was fitted to Gumbel’s Extreme Value Type 1 distribution. Linear Regression Analysis was then used to obtain the intensity-duration relationships for the various locations from which Intensity-Duration Frequency (IDF) curves were generated using Microsoft Excel for various return periods. Keywords:  Extreme rainfall, intensity, duration, frequency, Northern Nigeria


2020 ◽  
Author(s):  
Cai Zhao ◽  
Liu Jiufu ◽  
Liu Hongwei ◽  
Liao Aimin ◽  
Liao Minhan

<p>The double-tipping bucket rain gauge (SL3-1) is widely used in meteorological stations to minimize the systematic errors by the influence of rainfall intensity on TBRs in China. With two tipping buckets, the upper tipping bucket turns over and injects rainwater into the converging funnel, and the lower tipping bucket can record the rainfall. In this study, CFD (computational fluid dynamic) simulations and experiments were performed to investigate the function of the double tipping bucket for TBRs in different rainfall intensity. In simulation, the volume-of-fluid model and Reynolds-averaged Navier–Stokes realizable k-ε model and dynamic mesh method were used. In experiments, electric balances, with accuracy of 0.001 g, were used to determine the water volume of the upper tipping bucket outflow. It shows that, with a converging funnel, natural precipitation is uniformed at a certain intensity around 1.9mm/min to control the rainwater outflow into blow tipping bucket to measure rainfall and reduce systematic errors caused by different precipitation intensities. Experimental results demonstrate that the outflow curve of the upper tipping bucket has high correspond with simulation results in tipping process. These results can provide knowledge of advantages of double tipping bucket rain gauge in rainfall measurement and improve the structure designs of double tipping bucket for TBRs and obtain more accurate rainfall data.</p>


Author(s):  
W.J. de Ruijter ◽  
Sharma Renu

Established methods for measurement of lattice spacings and angles of crystalline materials include x-ray diffraction, microdiffraction and HREM imaging. Structural information from HREM images is normally obtained off-line with the traveling table microscope or by the optical diffractogram technique. We present a new method for precise measurement of lattice vectors from HREM images using an on-line computer connected to the electron microscope. It has already been established that an image of crystalline material can be represented by a finite number of sinusoids. The amplitude and the phase of these sinusoids are affected by the microscope transfer characteristics, which are strongly influenced by the settings of defocus, astigmatism and beam alignment. However, the frequency of each sinusoid is solely a function of overall magnification and periodicities present in the specimen. After proper calibration of the overall magnification, lattice vectors can be measured unambiguously from HREM images.Measurement of lattice vectors is a statistical parameter estimation problem which is similar to amplitude, phase and frequency estimation of sinusoids in 1-dimensional signals as encountered, for example, in radar, sonar and telecommunications. It is important to properly model the observations, the systematic errors and the non-systematic errors. The observations are modelled as a sum of (2-dimensional) sinusoids. In the present study the components of the frequency vector of the sinusoids are the only parameters of interest. Non-systematic errors in recorded electron images are described as white Gaussian noise. The most important systematic error is geometric distortion. Lattice vectors are measured using a two step procedure. First a coarse search is obtained using a Fast Fourier Transform on an image section of interest. Prior to Fourier transformation the image section is multiplied with a window, which gradually falls off to zero at the edges. The user indicates interactively the periodicities of interest by selecting spots in the digital diffractogram. A fine search for each selected frequency is implemented using a bilinear interpolation, which is dependent on the window function. It is possible to refine the estimation even further using a non-linear least squares estimation. The first two steps provide the proper starting values for the numerical minimization (e.g. Gauss-Newton). This third step increases the precision with 30% to the highest theoretically attainable (Cramer and Rao Lower Bound). In the present studies we use a Gatan 622 TV camera attached to the JEM 4000EX electron microscope. Image analysis is implemented on a Micro VAX II computer equipped with a powerful array processor and real time image processing hardware. The typical precision, as defined by the standard deviation of the distribution of measurement errors, is found to be <0.003Å measured on single crystal silicon and <0.02Å measured on small (10-30Å) specimen areas. These values are ×10 times larger than predicted by theory. Furthermore, the measured precision is observed to be independent on signal-to-noise ratio (determined by the number of averaged TV frames). Obviously, the precision is restricted by geometric distortion mainly caused by the TV camera. For this reason, we are replacing the Gatan 622 TV camera with a modern high-grade CCD-based camera system. Such a system not only has negligible geometric distortion, but also high dynamic range (>10,000) and high resolution (1024x1024 pixels). The geometric distortion of the projector lenses can be measured, and corrected through re-sampling of the digitized image.


2020 ◽  
Vol 1 (1) ◽  
pp. 108-125
Author(s):  
Jaharuddin Jahar ◽  
Melia Rostiana ◽  
R Melda Maesarach

The purpose of this study was to decide the elements of performance at PT. General Takaful Insurance, to find out how to measure performance using the scorecard approach that is by measuring process performance and results performance, and interpreting in the form of conclusions. In this study, researchers tested apply maslahah at PT. General Takaful Insurance with a case study design. This research is a type of quantitative and qualitative research because it uses measurement data through formulas and if interpretative qualitative, and the data used are primary and secondary data. Data collection methods used are observation, interviews and documentation. The results showed that PT. General Takaful Insurance received a value of the performance benefit process of 0.7 which indicates that the company simply applied benefits in terms of process performance. And behave the benefit of PT. General Takaful Insurance got a value of 0.89 which shows that the company is quite good in providing benefits to stakeholders and shareholders. Keyword: Performance, Insurance, Scorecard Maslahah


1993 ◽  
Vol 27 (3-4) ◽  
pp. 1-13 ◽  
Author(s):  
Arie H. Havelaar ◽  
Siem H. Heisterkamp ◽  
Janneke A. Hoekstra ◽  
Kirsten A. Mooijman

The general concept of measurement errors is applied to quantitative bacteriological counts on membrane filters or agar plates. The systematic errors of these methods are related to the growth characteristics of the medium (recovery of target organisms and inhibition of non-target organisms) and to its differential characteristics (sensitivity and specificity). Factors that influence the precision of microbiological counts are the variation between replicates, within samples, between operators and between laboratories. It is also affected by the linearity of the method, the verification rate and, where applicable, the number of colonies subcultured for verification. Repeatability (r) and reproducibility (R) values can be calculated on the logarithmic scale.


2021 ◽  
Vol 13 (8) ◽  
pp. 4211
Author(s):  
Maciej Kozłowski ◽  
Andrzej Czerepicki ◽  
Piotr Jaskowski ◽  
Kamil Aniszewski

Urban traffic can be curbed in various ways, for instance, by introducing paid unguarded parking zones (PUPZ). The operational functionality of this system depends on whether or not the various system features used to document parking cases function properly, including those which enable positioning of vehicles parked in the PUPZ, recognition of plate numbers, event time recording, and the correct anonymisation of persons and other vehicles. The most fundamental problem of this system is its reliability, understood as the conformity of control results with the actual state of matters. This characteristic can be studied empirically, and this article addresses the methodology proposed for such an examination, discussed against a case study. The authors have analysed the statistical dependence of the e-control system’s measurement errors based on operational data. The results of this analysis confirm the rationale behind the deployment of the e-control system under the implementation of the smart city concept in Warsaw.


2020 ◽  
Vol 13 (1) ◽  
pp. 13
Author(s):  
Mohammed T. Mahmoud ◽  
Safa A. Mohammed ◽  
Mohamed A. Hamouda ◽  
Mohamed M. Mohamed

The influence of topographical characteristics and rainfall intensity on the accuracy of satellite precipitation estimates is of importance to the adoption of satellite data for hydrological applications. This study evaluates the three GPM IMERG V05B products over the arid country of Saudi Arabia. Statistical indices quantifying the performance of IMERG products were calculated under three evaluation techniques: seasonal-based, topographical, and rainfall intensity-based. Results indicated that IMERG products have the capability to detect seasons with the highest precipitation values (spring) and seasons with the lowest precipitation (summer). Moreover, results showed that IMERG products performed well under various rainfall intensities, particularly under light rain, which is the most common rainfall in arid regions. Furthermore, IMERG products exhibited high detection accuracy over moderate elevations, whereas it had poor performance over coastal and mountainous regions. Overall, the results confirmed that the performance of the final-run product surpassed the near-real-time products in terms of consistency and errors. IMERG products can improve temporal resolution and play a significant role in filling data gaps in poorly gauged regions. However, due to the errors in IMERG products, it is recommended to use sub-daily rain gauge data in satellite calibration for better rainfall estimation over arid and semiarid regions.


2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Qilong Xue ◽  
Ruihe Wang ◽  
Baolin Liu ◽  
Leilei Huang

In the oil and gas drilling engineering, measurement-while-drilling (MWD) system is usually used to provide real-time monitoring of the position and orientation of the bottom hole. Particularly in the rotary steerable drilling technology and application, it is a challenge to measure the spatial attitude of the bottom drillstring accurately in real time while the drillstring is rotating. A set of “strap-down” measurement system was developed in this paper. The triaxial accelerometer and triaxial fluxgate were installed near the bit, and real-time inclination and azimuth can be measured while the drillstring is rotating. Furthermore, the mathematical model of the continuous measurement was established during drilling. The real-time signals of the accelerometer and the fluxgate sensors are processed and analyzed in a time window, and the movement patterns of the drilling bit will be observed, such as stationary, uniform rotation, and stick–slip. Different signal processing methods will be used for different movement patterns. Additionally, a scientific approach was put forward to improve the solver accuracy benefit from the use of stick–slip vibration phenomenon. We also developed the Kalman filter (KF) to improve the solver accuracy. The actual measurement data through drilling process verify that the algorithm proposed in this paper is reliable and effective and the dynamic measurement errors of inclination and azimuth are effectively reduced.


Sign in / Sign up

Export Citation Format

Share Document