scholarly journals An Investigation into Mechanical Properties of Ductile Cast Iron with Different Heat Treatment Processes

2019 ◽  
Vol 63 (3) ◽  
pp. 183-187
Author(s):  
Romany R. Moussa ◽  
Amer E. Ali ◽  
Ragab K. Abdel-Magied ◽  
Mohamed N. Elshiekh

The mechanical properties as well as microstructure of the ductile cast iron (DCI) are most likely affected by heat treatments. In this work, the mechanical properties of different heat treated of DCI alloy were investigated. Two heat treatment (HT) processes were conducted for DCI; austempering and quenching followed by lower tempering. The melted alloy of DCI was poured in Y-block, from which the specimens of the mechanical tests were prepared. Experimental tests were carried out to investigate the effect of these HT processes on the mechanical properties. A comparison between mechanical properties due to HT and as cast DCI are presented and discussed. The results showed that there is a difference in microstructure, homogeneity, wear rate and compression of DCI based on the conducted heat treatment.

2021 ◽  
Author(s):  
Giuseppe Del Guercio ◽  
Manuela Galati ◽  
Abdollah Saboori

Abstract Additive Manufacturing processes are considered advanced manufacturing methods. It would be possible to produce complex shape components from a Computer-Aided Design model in a layer-by-layer manner. Lattice structures as one of the complex geometries could attract lots of attention for both medical and industrial applications. In these structures, besides cell size and cell type, the microstructure of lattice structures can play a key role in these structures' mechanical performance. On the other hand, heat treatment has a significant influence on the mechanical properties of the material. Therefore, in this work, the effect of the heat treatments on the microstructure and mechanical behaviour of Ti-6Al-4V lattice structures manufactured by EBM was analyzed. The main mechanical properties were compared with the Ashby and Gibson model. It is very interesting to notice that a more homogeneous failure mode was found for the heat-treated samples. The structures' relative density was the main factor influencing their mechanical performance of the heat-treated samples. It is also found that the heat treatments were able to preserve the stiffness and the compressive strength of the lattice structures. Besides, an increment of both the elongation at failure and the absorbed energy was obtained after the heat treatments. Microstructure analysis of the heat-treated samples confirms the increment of ductility of the heat-treated samples with respect to the as-built one.


2016 ◽  
Author(s):  
Lucas Pintol Nishikawa ◽  
André Caetano Melado ◽  
Hélio Goldenstein ◽  
Luiz Felipe Bauri ◽  
Dinecio dos Santos Filho ◽  
...  

2013 ◽  
Vol 334-335 ◽  
pp. 105-110 ◽  
Author(s):  
Siti Hawa Mohamed Salleh ◽  
Mohd Nazree Derman ◽  
Mohd Zaidi Omar ◽  
Junaidi Syarif ◽  
S. Abdullah

440C martensitic stainless steels are widely used because of their good mechanical properties. The mechanical properties of 440C martensitic stainless steel were evaluated after heat treatment of these materials at various types of heat treatment processes. The initial part of this investigation focused on the microstructures of these 440C steels. Microstructure evaluations from the as-received to the as-tempered condition were described. In the as-received condition, the formations of ferrite matrix and carbide particles were observed in this steel. In contrast, the precipitation of M7C3carbides and martensitic structures were present in this steel due to the rapid quenching process from the high temperature condition. After precipitation heat treatment, the Cr-rich M23C6carbides were identified within the structures. Moreover, a 30 minutes heat-treated sample shows the highest value of hardness compared to the others holding time. Finally, the tempering process had been carried out to complete the whole heat treatment process in addition to construct the secondary hardening phenomenon. It is believed that this phenomenon influenced the value of hardness of the 440C steel.


2010 ◽  
Vol 139-141 ◽  
pp. 235-238
Author(s):  
De Qiang Wei

In this paper, the low alloy bainite ductile cast iron has been obtained by a new heat treatment technique of the step austempering in room-temperature machine oil. The effects of element boron, manganese and copper on structure and mechanical properties of the bainite ductile cast Iron in above-mentioned process are investigated. The phenomenon, hardness lag of the alloyed bainite ductile cast Iron, has been discussed. It shows that after the step austempering in room-temperature machine oil, the hardness will increases with the time. It is found that boron and manganese can increase the hardness and reduce the impact strength while copper can increase the impact strength. The results show that reasonable alloyed elements can improve mechanical properties of the bainite ductile cast Iron. Essentially, hardness lag of the alloyed bainite ductile cast Iron is resulted from solute drag-like effect.


2011 ◽  
Vol 328-330 ◽  
pp. 1297-1300
Author(s):  
Guang Si Luo

Austempered ductile cast iron is newly developed engineering material with a favorable combination of comprehensive mechanical properties. Its properties, such as good comprehensive mechanical properties, high fatigue strength, and good fiction and wear characteristics are included. The application of ADI at home and abroad was presented as well. In order to ensure and improve mechanical properties of ADI, it should ensure high rank nodularity in terms of nodular cast iron, improve graphite nodules, reduce segregation and properly cut down the content of silicon and manganese. While in terms of heat treatment, in order to achieve ideal austenite ferrites, stable and reliable heat treatment process as well as relevant equipment is required.


Metals ◽  
2018 ◽  
Vol 8 (1) ◽  
pp. 72 ◽  
Author(s):  
Ronny Gouveia ◽  
Francisco Silva ◽  
Olga Paiva ◽  
Maria de Fátima Andrade ◽  
Lucas Pereira ◽  
...  

2016 ◽  
Vol 877 ◽  
pp. 400-406 ◽  
Author(s):  
Hannes Fröck ◽  
Matthias Graser ◽  
Benjamin Milkereit ◽  
Michael Reich ◽  
Michael Lechner ◽  
...  

Precipitation hardening aluminium alloys are widely used for automotive applications. To enhance the application of aluminium profiles, improved formability is needed. Tailor Heat Treated Profiles (THTP) with locally different material properties attempt to increase formability e.g. in bending processes. Tailoring of local properties is obtained by a local short-term heat treatment, dissolving the initial precipitate state (retrogression) and still allowing subsequent ageing. In the present study, the dissolution and precipitation behaviour of the aluminium alloy EN AW-6060 T4 was investigated during heating with differential scanning calorimetry (DSC). Heating curves from 20 to 600 °C with heating rates of 0.01 up to 5 K/s were recorded. Interrupted heat treatments with different maximum temperatures were performed in a deformation dilatometer. Immediately afterwards, tensile tests were carried out at room temperature. The course of the recorded mechanical properties as a function of the maximum temperature is discussed with regard to the dissolution and precipitation behaviour during heating. Finally, the aging behaviour of the investigated alloy was recorded after different typical short-term heat treatments and is discussed with reference to the DSC‐curves. The correlation of the microstructure and the mechanical properties enables the derivation of optimal parameters for the development of THTP through a local softening.


Author(s):  
Osita Obiukwu ◽  
Henry Udeani ◽  
Progress Ubani

The effect of various heat treatment operations (annealing, normalizing, tempering) on mechanical properties of 0.35% carbon steel was investigated. The change in the value of endurance limit of the material as a result of the various heat-treatment operations were studied thoroughly. It was found that the specimens tempered at low temperature (200°C) exhibited the best fatigue strength. Microscope was used to characterize the structural properties resulting from different heat treatment processes. The results from the tensile tests impact tests and hardness tests showed that the mechanical properties variate at every heat-treatment conditions. The microstructure of differently heat-treated steels was also studied.


Sign in / Sign up

Export Citation Format

Share Document