scholarly journals Genetic Soil Disinfestation, A Conceptual Framework to Reduce Inoculum Potential of Soilborne Plant Pathogens

Soilborne pathogens are major constraints to the production of many food and non-food crops worldwide. A wide array of strategies are employed to reduce the activities of soilborne pathogens including chemical and non-chemical methods such as solarization, fumigation, anaerobic soil disinfestation, and soil chemical treatment. This article succinctly describes these methods and proposes the concept of “genetic soil disinfestation” as an additional innovative approach for managing soilborne pathogens. Although many components of “genetic soil disinfestation” include well known and familiar tools such as crop rotation, the concept of “genetic soil disinfestation” redefines cropping systems in a unified perspective with focus on using a genetic approach to optimize the attributes of hosts and nonhosts that significantly reduce the populations of soilborne plant pathogens and the efficiency of invasiness of these pathogens.

2020 ◽  
Vol 12 (13) ◽  
pp. 5456
Author(s):  
Zhaoxin Song ◽  
Dongdong Yan ◽  
Wensheng Fang ◽  
Bin Huang ◽  
Xianli Wang ◽  
...  

Anaerobic soil disinfestation (ASD) is widely used to control soilborne diseases in organic crop production. The effect of ASD used different sealed films on soilborne pathogens and strawberry growth was evaluated in two laboratory studies and two field trials. Under maltose as carbon sources, 28 °C temperature and 30% of soil moisture optimal conditions ASD decreased Fusarium spp. and Phytophthora spp. by 100%. ASD used maltose as an organic amendment and sealed with totally impermeable film (TIF) obtained the highest suppression (>96%) against Fusarium spp. and Phytophthora spp. (>91%). According to the laboratory results, the efficacy of ASD utilizing 6 or 9 t/ha maltose and sealing with TIF was evaluated and compared with reference treatment with chloropicrin (Pic) or solarization (Sol) in the field trials. Compared with the untreated soil, ASD treatments greatly reduced the pathogenic population of Fusarium spp. and Phytophthora spp., and successfully controlled the damage of fusarium wilt with evidence of lower mortality (6%). ASD significantly increased soil nutrition promoted plant growth and increased strawberry yield, which was similar as the Pic, but better than Sol treatment. The analyzed fungal and bacterial microbiota did not show significant differences in the taxonomic richness and diversity between the compared treatments. Nevertheless, the abundance of some bacterial and fungal taxa tended to change between treated. The evidence showed that adding maltose and sealing TIF for ASD has the potential to replace Pic for pathogen control in commercial strawberry production.


2009 ◽  
Vol 19 (1) ◽  
pp. 96-100 ◽  
Author(s):  
Naveen Hyder ◽  
James J. Sims ◽  
Stephen N. Wegulo

Experiments conducted in vitro showed that coir [coconut (Cocos nucifera) mesocarp pith] suppressed growth of soilborne plant pathogens. Mycelial growth of Phytophthora capsici on potato dextrose agar (PDA) amended with an unsterilized coir suspension was strongly inhibited regardless of suspension concentration. Growth of P. capsici on PDA amended with a filter-sterilized coir suspension was uninhibited. Growth of Fusarium solani on water agar (WA) amended with unautoclaved coir was completely inhibited. Growth of F. solani on WA amended with autoclaved coir was uninhibited. Aspergillus terreus recovered from coir inhibited mycelial growth of various soilborne pathogens by up to 75%. The results from this study suggest that coir has the ability to suppress soilborne plant pathogens in vitro and this ability is largely due to microorganisms associated with the substrate.


2005 ◽  
Vol 95 (11) ◽  
pp. 1325-1332 ◽  
Author(s):  
Gerbert A. Hiddink ◽  
Aad J. Termorshuizen ◽  
Jos M. Raaijmakers ◽  
Ariena H. C. van Bruggen

The effect of mixed cropping on disease suppressiveness of soils was tested for two cropping systems, Brussels sprouts-barley and triticale-white clover. Disease suppressiveness of field soils was evaluated in bioassays for the soilborne pathogens Rhizoctonia solani, Fusarium oxysporum f. sp. lini, and Gaeumannomyces graminis var. tritici. For both cropping systems, mixed cropping did not enhance disease suppressiveness of the soils. In some cases, soil cropped to barley alone was significantly more suppressive to F. oxysporum f. sp. lini than soils cropped to Brussels sprouts or the mixture of Brussels sprouts and barley. Analyses of the diversity of the indigenous bacterial and fungal microflora by denaturing gradient gel electrophoresis of amplified 16S- and 18S-rDNA fragments, respectively, revealed, in most cases, no significant differences between mixed and mono-cropped soils. In conclusion, in this study, mixed cropping of soils with Brussels sprouts and barley or with triticale and white clover did not enhance microbial diversity or disease suppressiveness of soils to three different soilborne plant pathogens.


2017 ◽  
Vol 67 (1) ◽  
pp. 51-66 ◽  
Author(s):  
C. Shennan ◽  
J. Muramoto ◽  
S. Koike ◽  
G. Baird ◽  
S. Fennimore ◽  
...  

2021 ◽  
Vol 9 (8) ◽  
pp. 1638
Author(s):  
Shashika S. Hewavitharana ◽  
Emmi Klarer ◽  
Joji Muramoto ◽  
Carol Shennan ◽  
Mark Mazzola

Charcoal rot and Fusarium wilt, caused by Macrophomina phaseolina and Fusarium oxysporum f. sp. fragariae, respectively, are major soil-borne diseases of strawberry that have caused significant crop losses in California. Anaerobic soil disinfestation has been studied as an industry-level option to replace soil fumigants to manage these serious diseases. Studies were conducted to discern whether Gramineae carbon input type, incubation temperature, or incubation duration influences the efficacy of this disease control tactic. In experiments conducted using ‘low rate’ amendment applications at moderate day/night temperatures (24/18 °C), and carbon inputs (orchard grass, wheat, and rice bran) induced an initial proliferation and subsequent decline in soil density of the Fusarium wilt pathogen. This trend coincided with the onset of anaerobic conditions and a corresponding generation of various anti-fungal compounds, including volatile organic acids, hydrocarbons, and sulfur compounds. Generation of these metabolites was associated with increases in populations of Clostridium spp. Overall, carbon input and incubation temperature, but not incubation duration, significantly influenced disease suppression. All Gramineae carbon inputs altered the soil microbiome and metabolome in a similar fashion, though the timing and maximum yield of specific metabolites varied with input type. Fusarium wilt and charcoal rot suppression were superior when anaerobic soil disinfestation was conducted using standard amendment rates of 20 t ha−1 at elevated temperatures combined with a 3-week incubation period. Findings indicate that anaerobic soil disinfestation can be further optimized by modulating carbon source and incubation temperature, allowing the maximum generation of antifungal toxic volatile compounds. Outcomes also indicate that carbon input and environmental variables may influence treatment efficacy in a target pathogen-dependent manner which will require pathogen-specific optimization of treatment protocols.


2017 ◽  
Vol 218 ◽  
pp. 105-116 ◽  
Author(s):  
Haichao Guo ◽  
Francesco Di Gioia ◽  
Xin Zhao ◽  
Monica Ozores-Hampton ◽  
Marilyn E. Swisher ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document