scholarly journals Maltose and Totally Impermeable Film Enhanced Suppression of Anaerobic Soil Disinfestation on Soilborne Pathogens and Increased Strawberry Yield

2020 ◽  
Vol 12 (13) ◽  
pp. 5456
Author(s):  
Zhaoxin Song ◽  
Dongdong Yan ◽  
Wensheng Fang ◽  
Bin Huang ◽  
Xianli Wang ◽  
...  

Anaerobic soil disinfestation (ASD) is widely used to control soilborne diseases in organic crop production. The effect of ASD used different sealed films on soilborne pathogens and strawberry growth was evaluated in two laboratory studies and two field trials. Under maltose as carbon sources, 28 °C temperature and 30% of soil moisture optimal conditions ASD decreased Fusarium spp. and Phytophthora spp. by 100%. ASD used maltose as an organic amendment and sealed with totally impermeable film (TIF) obtained the highest suppression (>96%) against Fusarium spp. and Phytophthora spp. (>91%). According to the laboratory results, the efficacy of ASD utilizing 6 or 9 t/ha maltose and sealing with TIF was evaluated and compared with reference treatment with chloropicrin (Pic) or solarization (Sol) in the field trials. Compared with the untreated soil, ASD treatments greatly reduced the pathogenic population of Fusarium spp. and Phytophthora spp., and successfully controlled the damage of fusarium wilt with evidence of lower mortality (6%). ASD significantly increased soil nutrition promoted plant growth and increased strawberry yield, which was similar as the Pic, but better than Sol treatment. The analyzed fungal and bacterial microbiota did not show significant differences in the taxonomic richness and diversity between the compared treatments. Nevertheless, the abundance of some bacterial and fungal taxa tended to change between treated. The evidence showed that adding maltose and sealing TIF for ASD has the potential to replace Pic for pathogen control in commercial strawberry production.

2020 ◽  
Vol 12 (16) ◽  
pp. 6313
Author(s):  
Zhaoxin Song ◽  
Sebastien Massart ◽  
Dongdong Yan ◽  
Hongyan Cheng ◽  
Mathilde Eck ◽  
...  

Anaerobic soil disinfestation (ASD), as a bio-fumigation technology, has been developed to control soil-borne pests. There is increasing evidence showing that carbon sources and cover tarps play an important role in the ASD suppression of soil-borne pests, but little is known about the effect of composted chicken manure (CCM) and totally impermeable films (TIF) against soil-borne pests in the strawberry production system. In experiments, the colonies of Fusarium spp. and Phytophthora spp., which are recognized to cause strawberry soil-borne diseases, decreased significantly after ASD. The soil promoted a significant increase in ammonium nitrogen, nitrate-nitrogen and organic matter, but a decrease in oxidation-reduction potential after ASD. Besides, the strawberry plant height, stem thickness and yield were significantly higher than in the non-amended soil. Compared to the untreated control, ASD, both at 6 and 12 ton/ha of CCM, significantly (p = 0.05) increased strawberry marketable yield and income. The economic benefit could be due to the suppression of soil-borne diseases and the improvement of soil nutrition. The soil bacterial and fungal diversity and richness increased after soil fumigation. The increased presence of biological control agents led to the suppression of soil-borne pathogens. In summary, ASD with CCM amendments could be applied in pre-plant fumigation to control strawberry soil-borne pests, strengthen soil fertility, improve crop yield and increase growers’ income.


2019 ◽  
Vol 20 (1) ◽  
pp. 50-60
Author(s):  
Andres D. Sanabria-Velazquez ◽  
Anna L. Testen ◽  
Guillermo A. Enciso ◽  
Laura C. Soilan ◽  
Sally A. Miller

The effects of anaerobic soil disinfestation (ASD) on Sclerotinia sclerotiorum sclerotia viability was tested in four field trials in Paraguay. Plots were amended with wheat bran (20.2 Mg/ha), molasses (10.1 Mg/ha), or wheat bran (20.2 Mg/ha) plus molasses (10.1 Mg/ha), saturated with water, and covered with black plastic mulch for 3 weeks. Control plots were not amended but were saturated and either covered (anaerobic control) or maintained uncovered (aerobic control). Tubes painted with iron oxide paint were placed in soils to assess soil reducing conditions. Sclerotia were buried 6 cm deep in treated and control soils along with temperature data loggers. After 3 weeks, the viability of sclerotia was significantly lower in all ASD-treated soils (4 to 52%) compared with the aerobic control soil (100%), regardless of the carbon source used. Sclerotial viability was also significantly reduced compared with anaerobic controls at three sites, depending on the carbon source used. A significant negative correlation between soil reducing conditions and sclerotia viability was observed at all sites. Wheat bran and molasses are widely available and inexpensive in Paraguay, and ASD with these carbon sources provides smallholder South American vegetable farmers with a new option for sustainable management of Sclerotinia and potentially other soilborne pathogens.


2020 ◽  
Vol 135 ◽  
pp. 104846 ◽  
Author(s):  
Ram B. Khadka ◽  
Madan Marasini ◽  
Ranjana Rawal ◽  
Anna L. Testen ◽  
Sally A. Miller

2020 ◽  
Vol 110 (4) ◽  
pp. 795-804
Author(s):  
Andres D. Sanabria-Velazquez ◽  
Anna L. Testen ◽  
Ram B. Khadka ◽  
Zhe Liu ◽  
Fuqing Xu ◽  
...  

Experiments were conducted to evaluate potential functional and mechanistic differences in the suppression of Sclerotinia sclerotiorum and S. minor and root-knot nematodes in muck soils by anaerobic soil disinfestation (ASD) using different carbon source amendments. Volatile compounds produced during ASD in muck soil amended with molasses, wheat bran, or mustard greens at 20.2 Mg/ha or a 2% ethanol solution significantly reduced the mycelial growth and number of sclerotia produced by both Sclerotinia spp. compared with the anaerobic control. In amended soils, acetic and butyric acids were detected in concentrations that reduced the viability of sclerotia of both pathogens. Higher concentrations of carbon dioxide were observed in ASD-treated soils, regardless of the amendment, than in the nonamended anaerobic control. Only amendment with wheat bran did not increase the production of methane gas during ASD compared with the controls. Meloidogyne hapla survival was completely suppressed in soils treated with ASD regardless of carbon source. Field trials were conducted in Ohio muck soil to assess survival of sclerotia of both Sclerotinia spp. The viability of sclerotia of both Sclerotinia spp. was significantly reduced in soil subjected to ASD amended with wheat bran (20.2 Mg/ha), molasses (10.1 Mg/ha), or wheat bran (20.2 Mg/ha) plus molasses (10.1 Mg/ha) compared with the controls. A consistent negative correlation between soil reduction and viability of sclerotia of both pathogens was observed. Wheat bran and molasses are both widely available amendments that can be used as ASD carbon sources for the management of soilborne pathogens in muck soils.


HortScience ◽  
2016 ◽  
Vol 51 (6) ◽  
pp. 703-711 ◽  
Author(s):  
Francesco Di Gioia ◽  
Monica Ozores-Hampton ◽  
Jason Hong ◽  
Nancy Kokalis-Burelle ◽  
Joseph Albano ◽  
...  

Anaerobic soil disinfestation (ASD) is considered a promising sustainable alternative to chemical soil fumigation (CSF), and has been shown to be effective against soilborne diseases, plant-parasitic nematodes, and weeds in several crop production systems. Nevertheless, limited information is available on the effects of ASD on crop yield and quality. Therefore, a field study was conducted on fresh-market tomato (Solanum lycopersicum L.) in two different locations in Florida (Immokalee and Citra), to evaluate and compare the ASD and CSF performances on weed and nematodes control, and on fruit yield and quality. In Immokalee, Pic-Clor 60 (1,3-dichloropropene + chloropicrin) was used as the CSF, whereas in Citra, the CSF was Paldin™ [dimethyl disulfide (DMDS) + chloropicrin]. Anaerobic soil disinfestation treatments were applied using a mix of composted poultry litter (CPL) at the rate of 22 Mg·ha−1, and two rates of molasses [13.9 (ASD1) and 27.7 m3·ha−1 (ASD2)] as a carbon (C) source. In both locations, soil subjected to ASD reached highly anaerobic conditions, and cumulative soil anaerobiosis was 167% and 116% higher in ASD2 plots than in ASD1 plots, in Immokalee and Citra, respectively. In Immokalee, the CSF provided the most significant weed control, but ASD treatments also suppressed weeds enough to prevent an impact on yield. In Citra, all treatments, including the CSF, provided poor weed control relative to the Immokalee site. In both locations, the application of ASD provided a level of root-knot nematode (Meloidogyne sp.) control equivalent to, or more effective than the CSF. In Immokalee, ASD2 and ASD1 plots provided 26.7% and 19.7% higher total marketable yield as compared with CSF plots, respectively. However, in Citra, total marketable yield was unaffected by soil treatments. Tomato fruit quality parameters were not influenced by soil treatments, except for fruit firmness in Immokalee, which was significantly higher in fruits from ASD treatments than in those from CSF soil. Fruit mineral content was similar or higher in ASD plots as compared with CSF. In fresh-market tomato, ASD applied using a mixture of CPL and molasses may be a sustainable alternative to CSF for maintaining or even improving marketable yield and fruit quality.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 526
Author(s):  
Berta de los Santos ◽  
Juan Jesús Medina ◽  
Luis Miranda ◽  
José Antonio Gómez ◽  
Miguel Talavera

(1) Background: Strawberry cultivation is highly dependent on soil disinfestation for proper development. Since the definitive methyl bromide phase-out, other chemicals have been used as alternatives. This research provides an overview on the efficacies of soil disinfestation methods on controlling soil fungal diseases of strawberry. (2) Methods: The efficacy of several soil disinfestation methods on soil fungal pathogens (SFP: Fusarium spp. and Macrophominaphaseolina) was analyzed in experimental field trials during eleven growing seasons. (3) Results: Average efficiencies in reducing soil pathogen inocula for soil disinfestation techniques are given. Soil disinfestations with chloropicrin, allyl isothiocyanate, dazomet, 1,3-dichloropropene:chloropicrin, methyl iodide:chloropicrin, and dimethyl disulfide reduced Fusarium spp. and M. phaseolina soil inocula by more than 90%. Combination of solarization with organic manures (biosolarization) reduced Fusarium spp. soil populations by 80% and M. phaseolina by 79%. Reductions in plant mortality and increases in fruit yields over the untreated controls did not differ between chemically fumigated and biosolarized plots. (4) Conclusions: Soil fungal pathogens are effectively controlled by chemical fumigation of soils in intensive strawberry crops in Spain. In the case of mixed infestations of SFP with nematodes, the most efficient treatment in suppressing soil-borne diseases was soil fumigation with 1,3-dichloropropene:chloropicrin, but other alternative chemicals, such as allyl isothiocyanate, dazomet, and dimethyl disulfide, provided high efficacies in reducing the SFP inocula. Soil biosolarization is proposed as an effective alternative to chemical soil fumigation for strawberry cultivation in Southern Spain when SFP inocula is not remarkably high.


2021 ◽  
Vol 5 ◽  
Author(s):  
Ram B. Khadka ◽  
Sally A. Miller

Potential synergy between anaerobic soil disinfestation (ASD) and Trichoderma spp. in suppression of Rhizoctonia root rot in radish was evaluated. A split-plot design with three replications was used; main plots were Trichoderma harzianum T22, Trichoderma asperellum NT25 and a non-Trichoderma control. Subplots were ASD carbon sources wheat bran, molasses, chicken manure, and mustard greens and two non-amended controls: anaerobic (covered and flooded) and aerobic (not covered or flooded). Carbon sources and Rhizoctonia solani inoculant were mixed with soil, placed in pots, and flooded, followed by drenching Trichoderma spore suspensions and sealing the pots in zip-lock bags. After 3 weeks, bags were removed, soil was aired for 1 week and radish “SSR-RR-27” was seeded. Rhizoctonia root rot severity and incidence were lowest in radish plants grown in ASD-treated soil amended with wheat bran, molasses, or mustard greens across all Trichoderma treatments. Disease severity was lower in radish plants treated with NT25 than with T22 or the non-Trichoderma control across all ASD treatments, and in radish grown in ASD-treated soil amended with wheat bran plus NT25 compared to ASD-wheat bran or NT25 alone. Rhizoctonia solani populations were significantly reduced by ASD treatment regardless of carbon source, while Trichoderma populations were not affected by ASD treatment with the exception of ASD-mustard greens. The interactions of either Trichoderma isolate and ASD with most carbon sources were additive, while T22 with ASD-molasses and NT25 with ASD–wheat bran interactions were synergistic in reducing disease severity. One interaction, T22 with ASD-chicken manure was antagonistic. Enhancement of ASD efficacy in suppressing soilborne diseases such as Rhizoctonia root rot by additional soil amendment with Trichoderma spp. during the process appears to be dependent on both Trichoderma isolate and ASD carbon source.


EDIS ◽  
2019 ◽  
Vol 2019 (6) ◽  
pp. 5
Author(s):  
Bodh R. Paudel ◽  
Francesco Di Gioia ◽  
Qiang Zhu ◽  
Xin Zhao ◽  
Monica Ozores-Hampton ◽  
...  

Anaerobic soil disinfestation (ASD) is a relatively new technique that appears to be a promising tool for soilborne pest management and crop production improvement. This new 5-page publication of the UF/IFAS Horticultural Sciences Department is intended to introduce ASD for Florida vegetable growers. Written by Bodh R. Paudel, Francesco Di Gioia, Qiang Zhu, Xin Zhao, Monica Ozores-Hampton, Marilyn E. Swisher, Kaylene Sattanno, Jason C. Hong, and Erin N. Rosskopf. https://edis.ifas.ufl.edu/hs1345


Soilborne pathogens are major constraints to the production of many food and non-food crops worldwide. A wide array of strategies are employed to reduce the activities of soilborne pathogens including chemical and non-chemical methods such as solarization, fumigation, anaerobic soil disinfestation, and soil chemical treatment. This article succinctly describes these methods and proposes the concept of “genetic soil disinfestation” as an additional innovative approach for managing soilborne pathogens. Although many components of “genetic soil disinfestation” include well known and familiar tools such as crop rotation, the concept of “genetic soil disinfestation” redefines cropping systems in a unified perspective with focus on using a genetic approach to optimize the attributes of hosts and nonhosts that significantly reduce the populations of soilborne plant pathogens and the efficiency of invasiness of these pathogens.


2021 ◽  
pp. 1-10
Author(s):  
Tanner Donahoo ◽  
Lisha Zhang ◽  
Matthew Cutulle ◽  
Abolfazl Hajihassani

Increasing regulations and restrictions regarding on-farm chemical use and growing consumer demands for organic food products warrant the development of efficient biological methods for plant disease control and pest management. Grafting and anaerobic soil disinfestation are two sustainable crop production techniques developed to control and regulate weeds, root-knot nematodes (Meloidogyne incognita), and soilborne pathogens. Therefore, the present study explores the economic impact of using grafting and anaerobic soil disinfestation, independently and in conjunction, to determine the best combination in terms of yield and net returns for producers. This study drew from tomato (Solanum lycopersicum) field trials conducted in 2020 on a 0.5-acre plot at the Clemson Coastal Research and Education Center in Charleston, SC, where five grafting and three anaerobic soil disinfestation treatments were used in combinations for comparisons. Each treatment combination was subjected to sealed (plastic mulch covering a plot punctured 5 weeks after applying anaerobic soil disinfestation treatment) and unsealed (plastic mulch covering a plot punctured immediately after the application of anaerobic soil disinfestation treatment) plot conditions during the anaerobic soil disinfestation phase of plant bed preparation. Treatment combinations with cottonseed meal carbon-sourced anaerobic soil disinfestation were unviable because of lower net returns compared with treatment combinations without anaerobic soil disinfestation in nearly every case. Grafting (‘Roadster’ self-grafted) combined with molasses and chicken manure carbon-sourced anaerobic soil disinfestation under unsealed plot conditions was the most optimal treatment combination in the field trials with the greatest gains (net return per acre) to producers. The positive synergistic effects of combining these methods suggest that grafting and anaerobic soil disinfestation yield better results in conjunction than separately.


Sign in / Sign up

Export Citation Format

Share Document