scholarly journals Management of Pseudomonas Aeruginosa Related Infection in Emergency Department

2020 ◽  
Vol 5 (5) ◽  

Pseudomonas aeruginosa relating infection has high mortality rate in health care setting. In particular, immunocompromised and critically ill patients. Recent studies suggested considering broad-spectrum antipseudomonal antibiotics for Gram-negative bacteria coverage in the emergency Department, especially for high-risk patients. A number of studies have been conducted to assess risk factors of resistance.This review will evaluate the available antipseudomonal antibiotic along with its resistant pattern. Also it will discuss selected antipseudomonal agent in managing Multidrug resistant duo to Pseudomonas aeruginosa. The review will discuss the Drug selection approaches for patients with neutropenia, pneumonia, and urinary tract infections. The last part in the review will highlight the preferred empirical antipseudomonal antibiotic used at Emergency Department.

2009 ◽  
Vol 54 (1) ◽  
pp. 346-352 ◽  
Author(s):  
Ørjan Samuelsen ◽  
Mark A. Toleman ◽  
Arnfinn Sundsfjord ◽  
Johan Rydberg ◽  
Truls M. Leegaard ◽  
...  

ABSTRACT Scandinavia is considered a region with a low prevalence of antimicrobial resistance. However, the number of multidrug-resistant (MDR) Gram-negative bacteria is increasing, including metallo-β-lactamase (MBL)-producing Pseudomonas aeruginosa. In this study MBL-producing P. aeruginosa isolates identified in Norway (n = 4) and Sweden (n = 9) from 1999 to 2007 were characterized. Two international clonal complexes (CC), CC111 (n = 8) and CC235 (n = 2), previously associated with MBL-producing isolates, were dominant. CC111 isolates (ST111/229; serotype O12; bla VIM-2) included clonally related isolates identified in Skåne County, Sweden (n = 6), and two isolates associated with importation from Greece and Denmark. In all CC111 isolates, bla VIM-2 was located in integron In59.2 or In59 variants. The two CC235 isolates (ST235/ST230; serotype O11; bla VIM-4) were imported from Greece and Cyprus, were possibly clonally related, and carried bla VIM-4 in two different integron structures. Three isolates imported from Ghana (ST233; serotype O6; bla VIM-2), Tunisia (ST654; serotype O11; bla VIM-2), and Thailand (ST260; serotype O6; bla IMP-14) were clonally unrelated. ST233 was part of a new CC (CC233) that included other MBL-producing isolates, while ST654 could also be part of a new CC associated with MBL producers. In the isolates imported from Ghana and Tunisia, bla VIM-2 was part of unusual integron structures lacking the 3′ conserved segment and associated with transposons. The bla VIM gene was found to be located on the chromosome in all isolates. Known risk factors for acquisition of MBL were reported for all patients except one. The findings suggest that both import of successful international clones and local clonal expansion contribute to the emergence of MBL-producing P. aeruginosa in Scandinavia.


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 340
Author(s):  
Raquel Bandeira da Silva ◽  
Mauro José Salles

Gram-negative bacteria (GNB), including multidrug-resistant (MDR) pathogens, are gaining importance in the aetiology of prosthetic joint infection (PJI). This retrospective observational study identified independent risk factors (RFs) associated with MDR-GNB PJI and their influence on treatment outcomes. We assessed MDR bacteria causing hip and knee PJIs diagnosed at a Brazilian tertiary hospital from January 2014 to July 2018. RFs associated with MDR-GNB PJI were estimated by bivariate and multivariate analyses using prevalence ratios (PRs) with significance at p < 0.05. Kaplan–Meier analysis was performed to evaluate treatment outcomes. Overall, 98 PJI patients were analysed, including 56 with MDR-GNB and 42 with other bacteria. Independent RFs associated with MDR-GNB PJI were revision arthroplasty (p = 0.002), postoperative hematoma (p < 0.001), previous orthopaedic infection (p = 0.002) and early infection (p = 0.001). Extensively drug-resistant GNB (p = 0.044) and comorbidities (p = 0.044) were independently associated with MDR-GNB PJI treatment failure. In sum, MDR-GNB PJI was independently associated with previous orthopaedic surgery, postoperative local complications and pre-existing infections and was possibly related to selective pressure on bacterial skin colonisation by antibiotics prescribed for early PJI. Infections due to MDR-GNB and comorbidities were associated with higher treatment failure rates.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S457-S457
Author(s):  
Henry Pablo Lopes Campos e Reis ◽  
Ana Beatriz Ferreira Rodrigues ◽  
Julio César Castro Silva ◽  
Lia Pinheiro de Lima ◽  
Talita Lima Quinaher ◽  
...  

Abstract Background Enterobacteria and multidrug-resistant non-fermenting Gram-negative bacilli present a challenge in the management of invasive infections, leading to mortality rates due to their limited therapeutic arsenal. The objective of this work was to analyze risk factors that may be associated with these infections, for a better situational mapping and assertive decision-making in a university hospital in Brazil. Methods The study was conducted between January and September 2019, with 167 patients in contact isolation at a university hospital in Brazil. Potential outcome-related variables for wide-resistance Gram-negative bacteria (BGN) infections were evaluated. Risk factors were identified from univariate statistical analysis using Fisher’s test. Results 51 (30.5%) out of 167 patients in contact isolation evolved with wide-resistance BGN infection. Risk factors in univariate analysis were age, hospital unit and previous use of invasive devices. Patients aged up to 59 years were more likely to progress to infection than those aged over 60 years (p 0.0274, OR 2.2, 95% CI 1.1-4.5). Those admitted to the oncohematology (p &lt; 0.001, OR 32.5, Cl 9.1-116.3) and intensive care unit (p &lt; 0.001, OR 28.0, Cl 3.5-225.9) units were more likely to develop this type of infection. The least likely were those admitted to a kidney transplant unit (p 0.0034, OR 15.33, Cl 1.8-131.0). Prior use of mechanical ventilation (p 0.0058, OR 12.2, Cl 2.0-76.1) and delayed bladder catheter (p 0.0266, OR 5.0, Cl 1.2-20.1) in patients with respiratory and urinary tract infection, respectively, were also reported as risk factors related to these infections. The gender of the patients was not significant for the study. Conclusion This study determined that variables such as age, hospitalization unit, use of mechanical ventilation and delayed bladder catheter could be considered important risk factors in triggering the infectious process by wide-resistant gram-negative bacteria. Thus, the analysis of these factors becomes a great foundation to prevent the development of multiresistant pathogens through prevention strategies, prophylaxis management and more targeted empirical therapies. Disclosures All Authors: No reported disclosures


mSphere ◽  
2017 ◽  
Vol 2 (6) ◽  
Author(s):  
Jeffrey A. Melvin ◽  
Jordan R. Gaston ◽  
Shawn N. Phillips ◽  
Michael J. Springer ◽  
Christopher W. Marshall ◽  
...  

ABSTRACT How bacteria compete and communicate with each other is an increasingly recognized aspect of microbial pathogenesis with a major impact on disease outcomes. Gram-negative bacteria have recently been shown to employ a contact-dependent toxin-antitoxin system to achieve both competition and regulation of their physiology. Here, we show that this system is vital for virulence in acute infection as well as for establishment of chronic infection in the multidrug-resistant pathogen Pseudomonas aeruginosa. Greater understanding of the mechanisms underlying bacterial virulence and infection is important for the development of effective therapeutics in the era of increasing antimicrobial resistance. Microorganisms exist in a diverse ecosystem and have evolved many different mechanisms for sensing and influencing the polymicrobial environment around them, utilizing both diffusible and contact-dependent signals. Contact-dependent growth inhibition (CDI) is one such communication system employed by Gram-negative bacteria. In addition to CDI mediation of growth inhibition, recent studies have demonstrated CDI-mediated control of communal behaviors such as biofilm formation. We postulated that CDI may therefore play an active role in host-pathogen interactions, allowing invading strains to establish themselves at polymicrobial mucosal interfaces through competitive interactions while simultaneously facilitating pathogenic capabilities via CDI-mediated signaling. Here, we show that Pseudomonas aeruginosa produces two CDI systems capable of mediating competition under conditions of growth on a surface or in liquid. Furthermore, we demonstrated a novel role for these systems in contributing to virulence in acute infection models, likely via posttranscriptional regulation of beneficial behaviors. While we did not observe any role for the P. aeruginosa CDI systems in biofilm biogenesis, we did identify for the first time robust CDI-mediated competition during interaction with a mammalian host using a model of chronic respiratory tract infection, as well as evidence that CDI expression is maintained in chronic lung infections. These findings reveal a previously unappreciated role for CDI in host-pathogen interactions and emphasize their importance during infection. IMPORTANCE How bacteria compete and communicate with each other is an increasingly recognized aspect of microbial pathogenesis with a major impact on disease outcomes. Gram-negative bacteria have recently been shown to employ a contact-dependent toxin-antitoxin system to achieve both competition and regulation of their physiology. Here, we show that this system is vital for virulence in acute infection as well as for establishment of chronic infection in the multidrug-resistant pathogen Pseudomonas aeruginosa. Greater understanding of the mechanisms underlying bacterial virulence and infection is important for the development of effective therapeutics in the era of increasing antimicrobial resistance.


2021 ◽  
Vol 34 (Suppl 1) ◽  
pp. 41-43
Author(s):  
José Tiago Silva ◽  
Francisco López-Medrano

Cefiderocol is a novel catechol-substituted siderophore cephalosporin that binds to the extracellular free iron, and uses the bacterial active iron transport channels to penetrate in the periplasmic space of Gram-negative bacteria (GNB). Cefiderocol overcomes many resistance mechanisms of these bacteria. Cefiderocol is approved for the treatment of complicated urinary tract infections, hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia in the case of adults with limited treatment options, based on the clinical data from the APEKS-cUTI, APEKS-NP and CREDIBLE-CR trials. In the CREDIBLE-CR trial, a higher all-cause mortality was observed in the group of patients who received cefiderocol, especially those with severe infections due to Acinetobacter spp. Further phase III clinical studies are necessary in order to evaluate cefiderocol´s efficacy in the treatment of serious infections.


2020 ◽  
Author(s):  
Bruno Alves Rudelli ◽  
Pedro Nogueira Giglio ◽  
Vladimir Cordeiro Carvalho ◽  
Jose Ricardo Pecora ◽  
Henrique Melo Campos Gurgel ◽  
...  

Abstract BACKGROUND: debridement, antibiotics and implant retention (DAIR) with the exchange of modular components is the most widely used option for the treatment of acute periprosthetic joint infections. The objective of this study is to evaluate the effect of bacteria drug resistance profile on the success rates of DAIR. METHODS: All early acute periprosthetic infections in hip and knee arthroplasties treated with DAIR at our institution over the period from 2011 to 2015 were retrospectively analyzed. The success rate was evaluated according to the type of organism identified in culture: multidrug-sensitive (MSB), methicillin-resistant Staphylococcus aureus (MRSA), multidrug-resistant Gram-negative bacteria (MRB) and according to other risk factors for treatment failure. The data were analyzed using univariate and multivariate statistics.RESULTS: Fifty-seven patients were analyzed; there were 37 in the multidrug-sensitive bacteria (MSB) group, 11 in the methicillin-resistant Staphylococcus aureus (MRSA) group and 9 in the other multidrug-resistant Gram-negative bacteria (MRB) group. There was a statistically significant difference (p<0.05) in the treatment failure rate among the three groups: 8.3% for the MSB group, 18.2% for the MRSA group and 55.6% for the MRB group (p=0.005). Among the other risk factors for treatment failure, the presence of inflammatory arthritis presented a failure rate of 45.1 (p<0.05).CONCLUSION: DAIR showed a good success rate in cases of early acute infection by multidrug-sensitive bacteria. In the presence of infection by multidrug-resistant bacteria or association with rheumatic diseases the treatment failure rate was higher and other surgical options should be considered in this specific population. The MRSA group showed intermediate results between MSB and MRB and should be carefully evaluated.


2020 ◽  
Vol 64 (7) ◽  
Author(s):  
José Manuel Ortiz de la Rosa ◽  
Patrice Nordmann ◽  
Laurent Poirel

ABSTRACT Many transferable quinolone resistance mechanisms have been identified in Gram-negative bacteria. The plasmid-encoded 65-amino-acid-long ciprofloxacin-modifying enzyme CrpP was recently identified in Pseudomonas aeruginosa isolates. We analyzed a collection of 100 clonally unrelated and multidrug-resistant P. aeruginosa clinical isolates, among which 46 were positive for crpP-like genes, encoding five CrpP variants conferring variable levels of reduced susceptibility to fluoroquinolones. These crpP-like genes were chromosomally located as part of pathogenicity genomic islands.


Sign in / Sign up

Export Citation Format

Share Document