scholarly journals Ginsenoside Rg3 Inhibit The Proliferation And Metastasis of Cervical Cancer Cells in Vitro By Regulating NF-κB Signaling Pathway

2021 ◽  
Vol 5 (2) ◽  

Objective: To investigate the effect and mechanism of ginsenoside Rg3 on the proliferation and metastasis of cervical. Methods: Cervical cancer cells HeLa were treated with different concentrations (0, 0.12, 0.24, 0.48 mmol/L) of ginsenoside Rg3, and then the survival rate of HeLa cells was detected by CCK-8 method, and the migration and invasion of HeLa cells were assessed using Transwell test, and expression of E-cadherin, N-cadherin, vimentin, Toll receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), phosphorylated nuclear transcription factor κB p65 (P-NF-κB p65) proteins were calculated by Western blot. Results: After ginsenoside Rg3 (0.12, 0.24, 0.48 mmol/L) treatment, the survival rate, migration number, invasion number, and N-cadherer number, and N-cadherin, Vimentin, TLR4, MyD88, p-NF-κB p65 protein expression of HeLa cells were significantly reduced (P<0.05) Ginsenoside protein expression was significantly increased (P<0.05), and showed a concentration-dependent relationship. Conclusion: Ginsenoside Rg3 could inhibit the proliferation and metastasis of cervical cancer cells in vitro, and its mechanism might be related to the inhibition of NF-κB signaling pathway.

2020 ◽  
Vol 10 ◽  
Author(s):  
Nan Cui ◽  
Lu Li ◽  
Qian Feng ◽  
Hong-mei Ma ◽  
Dan Lei ◽  
...  

Hexokinase 2 (HK2) is a member of the hexokinases (HK) that has been reported to be a key regulator during glucose metabolism linked to malignant growth in many types of cancers. In this study, stimulation of HK2 expression was observed in squamous cervical cancer (SCC) tissues, and HK2 expression promoted the proliferation of cervical cancer cells in vitro and tumor formation in vivo by accelerating cell cycle progression, upregulating cyclin A1, and downregulating p27 expression. Moreover, transcriptome sequencing analysis revealed that MAPK3 (ERK1) was upregulated in HK2-overexpressing HeLa cells. Further experiments found that the protein levels of p-Raf, p-MEK1/2, ERK1/2, and p-ERK1/2 were increased in HK2 over-expressing SiHa and HeLa cells. When ERK1/2 and p-ERK1/2 expression was blocked by an inhibitor (FR180204), reduced cyclin A1 expression was observed in HK2 over-expressing cells, with induced p27 expression and inhibited cell growth. Therefore, our data demonstrated that HK2 promoted the proliferation of cervical cancer cells by upregulating cyclin A1 and down-regulating p27 expression through the Raf/MEK/ERK signaling pathway.


2019 ◽  
Vol 2019 ◽  
pp. 1-26
Author(s):  
Liubing Hu ◽  
Yan Wang ◽  
Zui Chen ◽  
Liangshun Fu ◽  
Sheng Wang ◽  
...  

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potent cancer cell apoptosis-inducing factor that can induce apoptosis in a variety of cancer cells. However, resistance to TRAIL in cancer cells is a huge obstacle in creating effective TRAIL-targeted clinical therapies. Thus, agents that can either enhance the effect of TRAIL or overcome its resistance are needed. In this study, we combined TRAIL with SNX-2112, an Hsp90 inhibitor we previously developed, to explore the effect and mechanism that SNX-2112 enhanced TRAIL-induced apoptosis in cervical cancer cells. Our results showed that SNX-2112 markedly enhanced TRAIL-induced cytotoxicity in HeLa cells, and this combination was found to be synergistic. Additionally, we found that SNX-2112 sensitized TRAIL-mediated apoptosis caspase-dependently in TRAIL-resistant HeLa cells. Mechanismly, SNX-2112 downregulated antiapoptosis proteins, including Bcl-2, Bcl-XL, and FLIP, promoted the accumulation of reactive oxygen species (ROS), and increased the expression levels of p-JNK and p53. ROS scavenger NAC rescued SNX-2112/TRAIL-induced apoptosis and suppressed SNX-2112-induced p-JNK and p53. Moreover, SNX-2112 induced the upregulation of death-receptor DR5 in HeLa cells. The silencing of DR5 by siRNA significantly decreased cell apoptosis by the combined effect of SNX-2112 and TRAIL. In addition, SNX-2112 inhibited the Akt/mTOR signaling pathway and induced autophagy in HeLa cells. The blockage of autophagy by bafilomycin A1 or Atg7 siRNA abolished SNX-2112-induced upregulation of DR5. Meanwhile, ROS scavenger NAC, JNK inhibitor SP600125, and p53 inhibitor PFTα were used to verify that autophagy-mediated upregulation of DR5 was regulated by the SNX-2112-stimulated activation of the ROS-JNK-p53 signaling pathway. Thus, the combination of SNX-2112 and TRAIL may provide a novel strategy for the treatment of human cervical cancer by overcoming cellular mechanisms of apoptosis resistance.


2021 ◽  
Vol 20 (1) ◽  
pp. 75-81
Author(s):  
Xinxiang Wang ◽  
Tao Wang

Purpose: To investigate the anticancer effects of swertiamarin against taxol- resistant human cervical cancer cells.Method: Cell viability was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5–diphenyl tetrazolium bromide (MTT) assay while colony survival was evaluated by clonogenic assay. Apoptotic cell death was assessed by AO/ETBR staining and western blotting techniques. The levels of reactive oxygen species (ROS) were measured using 2,7, dicholoro dihydrofluoresceindiacetate (H2DCFDA) staining.Cell migration and invasion were monitored with Transwell chamber assay. Western blotting assay was used to determine the expression levels of proteins of the MEK/ERK signaling pathway.Results: Swertiamarin induced dose- and time-dependent inhibition of proliferation of HeLa cervical cancer cells (p < 0.05). It also suppressed the colony formation potential of HeLa cells, and induced various structural modifications in HeLa cells. Swertiamarin exposure resulted in the formation of earlyapoptotic, late-apoptotic and necrotic cells, and significant modulation of apoptosis-allied proteins. It was observed that the migration and invasion of HeLa cells were potentially suppressed in dose-reliant fashion by swertiamarin. Western blotting results showed that the expressions of p-MEK and p-ERK were markedly reduced, while those of MEK and ERK were unaffected (p < 0.05).Conclusion: Swertiamarin exerts in vitro anticancer activity against cervical cancer cells (HeLa). Thus, it is promising for use in cervical cancer chemotherapy. However, there is need for confirmation of these findings through further in vivo and in vitro investigations. Keywords: Swertiamarin, Gentianaceae, Triterpene Sapogenin, Cervical cance


2020 ◽  
Author(s):  
Xiaofei Jiang ◽  
Mingqing Shi ◽  
Miao Sui ◽  
Yizhen Yuan ◽  
Shuang Zhang ◽  
...  

Abstract Background: Cervical cancer continues to be the leading cause of cancer deaths among women worldwide. Oleanolic acid (OA) is a naturally occurring substance found in the leaves, fruits, and rhizomes of plants that has anti-cancer activity. Methods: We used tumor-bearing mice as the animal model and Hela cell as cell models. Western blot was used for detecting the expression of proteins in ferroptosis related proteins acyl-CoA synthase long-chain family member 4 (ACSL4), ferritin heavy chain (FTH1), transferrin receptor (TfR1) and glutathione peroxidase 4 (GPX4) in vivo and in vitro. MTT and EdU was for the detection of the viability of Hela cells. Results: In vivo experiments showed that OA significantly reduced the size and mass of cervical cancer tumors. In vitro experiments showed that OA significantly reduced the viability and proliferation capacity of Hela cells. In both in vivo and in vitro assays, OA increased the level of oxidative stress and Fe2+ content, and increased the expression of ferroptosis related proteins. We found high expression of ACSL4 in both xenograft models and cervical carcinoma cells. Meanwhile, knockdown of ACSL4 expression using shRNA in cervical cancer cells significantly increased cell viability and proliferation. In addition, decreased ROS levels and GPX4 were detected in ACSL4 knockdown cervical cancer cells, suggesting that ACSL4 inhibition may contribute to the reduction of ferroptosis within Hela cells and thus improve Hela cell survival. Conclusion: Promotion of ACSL4 dependent ferroptosis through OA may be an effective approach to treat cervical cancer.


2020 ◽  
Vol 19 (1) ◽  
pp. 115-120
Author(s):  
Hai Yang ◽  
Jiyi Xia ◽  
Yan Li ◽  
Yong Cao ◽  
Li Tang ◽  
...  

Purpose: To identify the role of baicalein in human cervical cancer and to determine whether baicalein treatment affects hedgehog/Gli signaling pathway. Methods: Cell proliferation was evaluated by MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and colony formation assays. Cell death rate was assessed by PI-staining and FACS assay. Furthermore, cell invasion was assessed by Transwell assay while the levels of the key proteins were measured by western blotting analysis. Results: Baicalein suppressed the viability and proliferation of HeLa cells. The colony formation ability and relative migration rate were significantly decreased in the HeLa cells treated with 50 μM baicalein. Furthermore, the levels of Shh, Gli1, MMP-9, and VEGF declined significantly in baicalein-treated cells. Conclusion: The results demonstrate that baicalein inhibits the growth and invasiveness of cervical cancer cells partly by suppressing the activation of hedgehog/Gli signaling pathway in a concentrationdependent manner. Keywords: Cervical cancer, baicalein, hedgehog/Gli pathway, MMP-9


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
P. A. S. R. Santos ◽  
G. B. Avanço ◽  
S. B. Nerilo ◽  
R. I. A. Marcelino ◽  
V. Janeiro ◽  
...  

The objective of this study was to evaluate the cytotoxic activity of rosemary (REO,Rosmarinus officinalisL.), turmeric (CEO,Curcuma longaL.), and ginger (GEO,Zingiber officinaleR.) essential oils in HeLa cells. Cytotoxicity tests were performedin vitro, using tetrazolium (MTT) and neutral red assays for evaluation of antiproliferative activity by different mechanisms, trypan blue assay to assess cell viability and evaluation of cell morphology for Giemsa to observe the cell damage, and Annexin V to evaluate cell death by apoptosis. CEO and GEO exhibited potent cytotoxic activity against HeLa cells. IC50obtained was 36.6 μg/mL for CEO and 129.9 μg/mL for GEO. The morphology of HeLa cells showed condensation of chromatin, loss of cell membrane integrity with protrusions (blebs), and cell content leakage for cells treated with CEO and GEO, from the lowest concentrations studied, 32.81 μg/mL of CEO and 32.12 μg/mL of GEO. The Annexin V assay revealed a profile of cell death by apoptosis for both CEO and GEO. The results indicate cytotoxic activityin vitrofor CEO and GEO, suggesting potential use as anticancer agents for cervical cancer cells.


2013 ◽  
Vol 320 ◽  
pp. 522-525
Author(s):  
Xiao Yang Qiu ◽  
An Ran Shi ◽  
Xiao Li Zhang

Three salicyloyl hydrazone derivatives (compounds 1-3) were prepared by reacting salicyloyl hydrazine with substituted formaldehydes. Their structures were characterized by melting point, 1H-NMR, ESI-MS and elemental analyses. The cytotoxic activity of compounds 1-3 was evaluated in vitro against Hela cells (human cervical cancer cells). The results revealed that all the compounds showed cytotoxic activity, with IC50 values lower than 15 μM.


2019 ◽  
Vol 18 (2) ◽  
pp. 196-200
Author(s):  
Yu Lixiao ◽  
Liu Xiaoyun

Cervical cancer is one of the most malignant cancers of the female reproductive system with high morbidity and mortality. In the current study, we have examined the effect of eriodictyol on cell survival including cell growth, cell cycle and apoptosis of cervical cancer cells and also explored the underlying mechanism(s). To this end, CCK-8 assay, flow cytometry and western blotting assays were performed in cervical cancer HeLa cells. Eriodictyol significantly inhibited cell survival including impeding the cell viability, arresting the cell cycle at the G1 phase and potentiating cell apoptosis in a concentration-dependent manner. Also, ERI activated PTEN, P21, cleaved caspase-3/-9 expression and downregulated P-Akt and cyclin D1 expression in a dose-dependent manner. In conclusion, ERI can inhibit cervical cancer HeLa cells viability via impeding cell cycle and inducing apoptosis by regulating PTEN/Akt signaling pathway.


2020 ◽  
Author(s):  
Kang Zhu ◽  
He Bai ◽  
Mingzhu Mu ◽  
Yuanyuan Xue ◽  
Zhao Duan

Abstract Background Given its crucial role in human malignancies, how Ring finger protein 6 (RNF6) functions in cervical cancer has yet to be elucidated. In our research, we explored the biological significance of RNF6 in cervical cancer HeLa cells and its possible regulatory mechanism. Methods The expression levels of RNF6 mRNA and protein in cervical cancer tissues and cells were both analyzed, the former by Gene Expression Profiling Interactive Analysis (GEPIA), and the latter by quantitative real-time PCR (qRT-PCR) and immunohistochemistry assays. In vitro cell proliferation was tested through MTT assay and flow cytometer was used to detected Cell apoptosis. The activation of ERK(extracellular signal regulated kinase) was explored by Western Blot. Results In the present research, we found that the expression of RNF6 was high in both primary tissues and cervical cancer cells. RNF6 could promote cervical cancer HeLa cells growth. Once knockdown of RNF6 in cervical cancer cells, cell proliferation could be suppressed and cell apoptosis was promoted. Moreover, its elevation had an adverse effect on the prognosis of cervical cancer. Further studies showed that ERK activation is one of the potential mechanisms. Conclusion These findings provided evidence that the up-regulated RNF6 could activate the MAPK/ERK pathway to regulate the cell growth in cervical cancer, which suggested that RNF6 could be a promising target for diagnosis and treatment for cervical cancer.


Sign in / Sign up

Export Citation Format

Share Document