scholarly journals Rapid clearance of erythrodermic psoriasis with apremilast

2017 ◽  
Vol 11 (2) ◽  
Author(s):  
Evangelia Papadavid ◽  
Georgios Kokkalis ◽  
Georgios Polyderas ◽  
Konstantinos Theodoropoulos ◽  
Dimitrios Rigopoulos
1981 ◽  
Vol 20 (02) ◽  
pp. 90-93
Author(s):  
P.B. Parab ◽  
U.R. Raikar ◽  
R.D. Ganatra ◽  
M. C. Patel

Phenolphthalexon, a compound with iminodiacetic acid as a functional group, has been labelled with 113mIn to high chemical purity and its usefulness in studies of biliary excretion patency has been studied. Organ distribution of 113mIn-phenolphthalexon in mice was characterized by high liver uptake (50.8% of the administered dose after 5 min) and rapid clearance through the gall bladder. An animal model for studying obstruction of biliary excretion has been developed. Data on the kinetics of the radiopharmaceutical were obtained by collecting in-vivo data through an on-line computer.


1993 ◽  
Vol 70 (02) ◽  
pp. 326-331 ◽  
Author(s):  
H R Lijnen ◽  
B Van Hoef ◽  
R A G Smith ◽  
D Collen

SummaryThe kinetic and fibrinolytic properties of a reversibly acylated stoichiometric complex between human plasmin and recombinant staphylokinase (plasmin-STAR complex) were evaluated. The acylation rate constant of plasmin-STAR by p-amidinophenyl-p’-anisate-HCI was 52 M-1 s-1 and its deacylation rate constant 1.2 × 10-4 s-1 (t½ of 95 min) which are respectively 50-fold and around 3-fold lower than for the plasmin-streptokinase complex. The acylated complex was stable as evidenced by binding to lysine-Sepharose. However, following an initial short lag phase, the acylated plasmin-STAR complex activated plasminogen at a similar rate as the unblocked complex, whereas the acylated plasmin-streptokinase complex did not activate plasminogen. These findings indicate that STAR, unlike streptokinase, dissociates from its acylated complex with plasmin in the presence of excess plasminogen. In agreement with this hypothesis, the time course of the lysis of a 125I-fibrin labeled plasma clot submerged in citrated human plasma, is similar for acylated plasmin-STAR, unblocked plasmin-STAR and free STAR (50% clot lysis in 2 h requires 12 nM of each agent). The plasma clearances of STAR-related antigen following bolus injection in hamsters were 1.0 to 1.5 ml/min for acylated plasmin-STAR, unblocked plasmin-STAR and free STAR, as a result of short initial half-lives of 2.0 to 2.5 min.The dissociation of the anisoylated plasmin-STAR complex and its consequent rapid clearance suggest that it has no apparent advantages as compared to free STAR for clinical thrombolysis.


2019 ◽  
Vol 19 (11) ◽  
pp. 1382-1387
Author(s):  
Ahmet M. Şenışık ◽  
Çiğdem İçhedef ◽  
Ayfer Y. Kılçar ◽  
Eser Uçar ◽  
Kadir Arı ◽  
...  

Background: Peptide-based agents are used in molecular imaging due to their unique properties, such as rapid clearance from the circulation, high affinity and target selectivity. Many of the radiolabeled peptides have been clinically experienced with diagnostic accuracy. The aim of this study was to investigate in vivo biological behavior of [99mTc(CO)3(H2O)3]+ radiolabeled glycylglycine (GlyGly). Methods: Glycylglycine was radiolabeled with a high radiolabeling yield of 94.69±2%, and quality control of the radiolabeling process was performed by thin layer radiochromatography (TLRC) and High-Performance Liquid Radiochromatography (HPLRC). Lipophilicity study for radiolabeled complex (99mTc(CO)3-Gly-Gly) was carried out using solvent extraction. The in vivo evaluation was performed by both biodistribution and SPECT imaging. Results: The high radiolabelling yield of 99mTc(CO)3-GlyGly was obtained and verified by TLRC and HPLRC as well. According to the in vivo results, SPECT images and biodistribution data are in good accordance. The excretion route from the body was both hepatobiliary and renal. Conclusion: This study shows that 99mTc(CO)3-GlyGly has the potential to be used as a peptide-based imaging agent. Further studies, 99mTc(CO)3-GlyGly can be performed on tumor-bearing animals.


Author(s):  
Wonbong Lim ◽  
Gayoung Jo ◽  
Bo Young Lee ◽  
Min Ho Park ◽  
Hoon Hyun

2021 ◽  
Vol 34 (2) ◽  
Author(s):  
Emanuele Trovato ◽  
Corinne Orsini ◽  
Filomena Russo ◽  
Giulio Cortonesi ◽  
Pietro Rubegni

2021 ◽  
Author(s):  
Lakshmi Narashimhan Ramana ◽  
Le N.M. Dinh ◽  
Vipul Agarwal

Graphene quantum dots (GQDs) continue to draw interest in biomedical applications. However, their efficacy gets compromised due to their rapid clearance from body. On one side, rapid clearance is desired...


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takahiro Morito ◽  
Ryuichi Harada ◽  
Ren Iwata ◽  
Yiqing Du ◽  
Nobuyuki Okamura ◽  
...  

AbstractBrain positron emission tomography (PET) imaging with radiolabelled proteins is an emerging concept that potentially enables visualization of unique molecular targets in the brain. However, the pharmacokinetics and protein radiolabelling methods remain challenging. Here, we report the performance of an engineered, blood–brain barrier (BBB)-permeable affibody molecule that exhibits rapid clearance from the brain, which was radiolabelled using a unique fluorine-18 labelling method, a cell-free protein radiosynthesis (CFPRS) system. AS69, a small (14 kDa) dimeric affibody molecule that binds to the monomeric and oligomeric states of α-synuclein, was newly designed for brain delivery with an apolipoprotein E (ApoE)-derived brain shuttle peptide as AS69-ApoE (22 kDa). The radiolabelled products 18F-AS69 and 18F-AS69-ApoE were successfully synthesised using the CFPRS system. Notably, 18F-AS69-ApoE showed higher BBB permeability than 18F-AS69 in an ex vivo study at 10 and 30 min post injection and was partially cleared from the brain at 120 min post injection. These results suggest that small, a brain shuttle peptide-fused fluorine-18 labelled protein binders can potentially be utilised for brain molecular imaging.


2021 ◽  
pp. 153537022110107
Author(s):  
Noah Trac ◽  
Eun Ji Chung

The lymph nodes are major sites of cancer metastasis and immune activity, and thus represent important clinical targets. Although not as well-studied compared to subcutaneous administration, intravenous drug delivery is advantageous for lymph node delivery as it is commonly practiced in the clinic and has the potential to deliver therapeutics systemically to all lymph nodes. However, rapid clearance by the mononuclear phagocyte system, tight junctions of the blood vascular endothelium, and the collagenous matrix of the interstitium can limit the efficiency of lymph node drug delivery, which has prompted research into the design of nanoparticle-based drug delivery systems. In this mini review, we describe the physiological and biological barriers to lymph node targeting, how they inform nanoparticle design, and discuss the future outlook of lymph node targeting.


2021 ◽  
Vol 22 (7) ◽  
pp. 3571
Author(s):  
Bonglee Kim ◽  
Ji-Eon Park ◽  
Eunji Im ◽  
Yongmin Cho ◽  
Jinjoo Lee ◽  
...  

Biocompatible nanoparticles (NPs) containing polymers, lipids (liposomes and micelles), dendrimers, ferritin, carbon nanotubes, quantum dots, ceramic, magnetic materials, and gold/silver have contributed to imaging diagnosis and targeted cancer therapy. However, only some NP drugs, including Doxil® (liposome-encapsulated doxorubicin), Abraxane® (albumin-bound paclitaxel), and Oncaspar® (PEG-Asparaginase), have emerged on the pharmaceutical market to date. By contrast, several phytochemicals that were found to be effective in cultured cancer cells and animal studies have not shown significant efficacy in humans due to poor bioavailability and absorption, rapid clearance, resistance, and toxicity. Research to overcome these drawbacks by using phytochemical NPs remains in the early stages of clinical translation. Thus, in the current review, we discuss the progress in nanotechnology, research milestones, the molecular mechanisms of phytochemicals encapsulated in NPs, and clinical implications. Several challenges that must be overcome and future research perspectives are also described.


Sign in / Sign up

Export Citation Format

Share Document