scholarly journals Fouling Weight Quantification in Antibacterial Polymeric Membrane During Protein Washwater Ultrafiltration–Synergetic Effects of Silver Nanoparticles and Chitosan

2020 ◽  
Vol 11 (3) ◽  
pp. 10371-10380

Controlling biofouling caused by bacterial growth onto the membrane surface and pores is essential when dealing with protein-based solutes to reduce cost and environmental impacts. Thus, this study was carried out to determine the effect of silver nanoparticles on fouling occurrence during surimi wash water ultrafiltration. Silver nanoparticles and chitosan were chosen as a bacteria inhibitor due to its remarkable antibacterial properties. The fouling weight represented the number of foulants attached to the membrane. These experiments were conducted by using the native PES membrane in comparison with the PES-Ag membrane, PES-Chitosan membrane, and PES-Ag-Chitosan membrane at a controlled condition where surimi wash water applied as a model protein. Foulant weight was significantly reduced by 56% for the PES-Ag-Chitosan membrane as compared to other membranes. It also indicates that silver nanoparticles and chitosan have the synergistic effect in overcoming the fouling contributed by both solutes depositions and bacterial growth as the total fouling weight of PES-Ag-chitosan is reduced almost 53% and 50% as compared to employing only chitosan and only silver nanoparticles, respectively.

Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1529
Author(s):  
Yu-Hsuan Chen ◽  
Wei-Hsun Wang ◽  
Sheng-Hui Lin ◽  
Yuan-Ting Yang-Wang ◽  
Sung-Pin Tseng ◽  
...  

Acinetobacter baumannii (A. baumannii) is a common and challenging pathogen of nosocomial infections, due to its ability to survive on inanimate objects, desiccation tolerance, and resistance to disinfectants. In this study, we investigated an antibacterial strategy to combat A. baumannii via the combination of antibiotics and silver protein. This strategy used a functional platform consisting of silver nanoparticles (AgNPs) resurrected from silver-based calcium thiophosphate (SSCP) through casein and arginine. Then, the silver protein was combined with tigecycline, the first drug in glycylcycline antibiotic, to synergistically inhibit the viability of A. baumannii. The synergistic antibacterial activity was confirmed by the 96-well checkerboard method to determine their minimum inhibitory concentrations (MIC) and calculated for the combination index (CI). The MIC of the combination of silver protein and tigecycline (0.31 mg/mL, 0.16 µg/mL) was significantly lower than that of the individual MIC, and the CI was 0.59, which indicates a synergistic effect. Consequently, we integrated the detailed synergistic antibacterial properties when silver protein was combined with tigecycline. The result could make for a promising approach for the treatment of A. baumannii.


Membranes ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 205
Author(s):  
Juan Zhang ◽  
Guang Wang ◽  
Jianhua Zhang ◽  
Zhiguang Xu ◽  
Yan Zhao ◽  
...  

Biofouling is a common but significant issue in the membrane process as it reduces permeate flux, increases energy costs, and shortens the life span of membranes. As an effective antibacterial agent, a small amount of silver nanoparticles (AgNPs) immobilized on membrane surfaces will alleviate the membrane from biofouling. However, loading AgNPs on the membrane surface remains a challenge due to the low loading efficiency or the lack of bonding stability between AgNPs and the membrane surface. In this study, a substrate-independent method is reported to immobilize silver nanoparticles on polymeric membrane surfaces by firstly modifying the membrane surface with functional groups and then forming silver nanoparticles in situ. The obtained membranes had good anti-biofouling properties as demonstrated from disk diffusion and anti-biofouling tests. The silver nanoparticles were stably immobilized on the membrane surfaces and easily regenerated. This method is applicable to various polymeric micro-, ultra-, nano-filtration and reverse osmosis (RO) membranes.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
M. A. El-Sheikh ◽  
L. K. El Gabry ◽  
H. M. Ibrahim

The water soluble photoinitiator (PI) 4-(trimethyl ammonium methyl) benzophenone chloride/UV system is used in the synthesis of silver nanoparticles (AgNPs). Green synthesis method involved using PI/UV system, carboxymethyl starch (CMS), silver nitrate, and water. AgNPs obtained had a spherical shape morphology and a size of 1–7 nm. To impart antibacterial properties, wool and acrylic fabrics were treated with AgNPs obtained. The PI/UV system was further utilized to fix AgNPs onto wool and acrylic fabrics by photocrosslinking to impart durable antibacterial properties. The effect of irradiation time on the antibacterial performance before and after repeated washing cycles was studied. S. aureus (as G +ve) and E. coli (as G −ve) were used to estimate the antibacterial performance of the finished fabrics. The antibacterial performance was directly proportional to the irradiation time but inversely proportional to the number of washing cycles. However, after the 15th washing cycle, samples still have bacteriostatic effect; that is, although they show zero inhibition zone, they cannot be attacked by the bacterial growth and do not inhibit the bacterial growth. AgNPs finished wool fabrics showed more antibacterial activity than those of AgNPs finished acrylic fabrics.


Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1684 ◽  
Author(s):  
Ilse De Leersnyder ◽  
Leen De Gelder ◽  
Isabel Van Driessche ◽  
Pieter Vermeir

Although the production and stabilization of metal nanoparticles (MNPs) is well understood, the behavior of these MNPs (possible aggregation or disaggregation) when they are intentionally or unintentionally exposed to different environments is a factor that continues to be underrated or overlooked. A case study is performed to analyze the stability of silver nanoparticles (AgNPs)—one of the most frequently used MNPs with excellent antibacterial properties—within two bacterial growth media: a minimally defined medium (IDL) and an undefined complex medium (LB). Moreover, the effect of aging, size and stabilization mechanisms is considered. Results clearly indicate a strong aggregation when AgNPs are dispersed in IDL. Regarding LB, the 100 nm electrosterically stabilized AgNPs remain stable while all others aggregate. Moreover, a serious aging effect is observed for the 10 nm electrostatically stabilized AgNPs when added to LB: after aggregation a restabilization effect occurs over time. Generally, this study demonstrates that the aging, medium composition (environment), size and stabilization mechanism—rarely acknowledged as important factors in nanotoxicity studies—have a profound impact on the AgNPs stabilization and should gain more attention in scientific research.


2019 ◽  
Vol 20 (4) ◽  
pp. 317-326 ◽  
Author(s):  
Manaf AlMatar ◽  
Işıl Var ◽  
Begüm Kayar ◽  
Emel Eker ◽  
Ebru Kafkas ◽  
...  

Background: The global rise of multi-drug resistant M. tuberculosis demands unconventional treatment to enhance the efficiency of current drugs. Punica granatum, which is known as pomegranate, is considered as a member of the Punicaceae family. Pomegranate, which is broadly documented for its activity against a wide spectrum of bacterial pathogens, deserves further scrutiny in this respect. Methods: Within this scope, this study investigated the effect of fresh pomegranate juice (FPJ) on the antibacterial activity of anti-tuberculosis drugs (Rifampin (R) and Isoniazid (INH)) against MDR-TB clinical isolates. The drug resistance profiles in M. tuberculosis clinical isolates were determined by susceptibility test using BACTEC MGIT 960 system. Four concentrations of fresh pomegranate juice (FPJ) (5%, 10%, 15%, and 20%) were evaluated in combination with R and INH at a dose range of (1.0 µg/ml) and (0.1 µg/ml), respectively against the MDR-TB isolates by the BACTEC MGIT 960 system. Moreover, this study scrutinized individual phenolic compounds of FPJ by using highperformance liquid chromatography (HPLC). The total polyphenols (TP), total flavonoid (TF), total anthocyanins content (TAC), and the antioxidant capacity were also assessed in FPJ. Results: Synergistic effects were observed between R and INH with FPJ against all tested strains. However, combination therapy of rifampin was more effective than isoniazid one. Therefore, the combination of R and FPJ has been used against (27) MDR-TB clinical isolates. 5% of FPJ plus R (1.0 µg/ml) were found to suppress the growth of one isolates for first group (INH and R resistant). However, 5% of FPJ demonstrated no synergistic impact with R for second (SM, R and INH resistant) and third group (INH, EMB, R and SM resistant). Moreover, 10% of FPJ and R (1.0 μg/ml) inhibited the bacterial growth of three isolates of first group and two isolates and one isolate for second and third group, respectively. Remarkably, 15% of FPJ plus R (1.0 µg/ml) appeared to inhibit the growth of MDR-TB isolates for all tested groups indicating a strong synergistic effect. Regarding H37RV, the complete inhibition of the bacterial growth was found to occur at 15% and 20% concentrations of FPJ only. Minimum inhibitory concentration (MIC) of FPJ ranged from (4% to13%) for first group and from (10% to15%) for second and third group. Thus, FPJ at 15% inhibited 100% of bacteria for all tested isolates (MIC100% =15%). Phenolic compounds identified in FPJ were gallic acid, benzoic acid, syringic, folic acid, pelargonidin, naringin+ellagic acid, naringenin, chlorogenic acid, caffeic acid, catechin, myricetin, kaempferol, quercetin, cyanidin-3-glycoside, p-cummaric acid, ferulic acid, and rutin. Total phenolic (TP), total flavonoid (TF), and total anthocyanin (TA) content were 841.5 mg/L, 638.73 mg RE/L, and 47.43 mg/L, accordingly. Conclusion: Overall, FPJ displayed synergistic effect with R against MDR-TB clinical isolates due to its high content of polyphenol and antioxidant capability.


2020 ◽  
Vol 16 ◽  
Author(s):  
Nihar Ranjan Panda ◽  
Dojalisa Sahu

Background: Metal oxide nanomaterial such as; ZnO shows novel structural, optical, electrical and antibacterial properties due to wide band gap (3.37 eV) and high excitonic binding energy (60 meV). Probing these inherent properties of nanosized ZnO with different morphology has generated new interest among researchers Objective: To investigate the size dependent functional attributes, ZnO nanorods were prepared by hydrothermal method and the photocatalytic (PC) efficiency was studied. The photoluminescence (PL) property of ZnO nanorods was also studied by recording the emission spectrum under photo-excitation. These nanorods (NRs) were coated on cotton fabric to study the effectiveness of these NRs in defending and inhibiting the growth of different bacteria Methods: The crystallographic structure and morphology of the ZnO samples were investigated by X-ray diffraction (XRD) and field emission scanning electron microscopic (FESEM) measurements. PL measurement at room temperature was undertaken by exciting the sample with light of wavelength 350 nm. The PC property of ZnO NRs was studied in degrading organic dyes like methylene blue. Bacteria like Staphylococcus aureus, Escherichia coli and Bacillus subtilis were cultured and the inhibition of growth of these bacteria was studied by the application of ZnO. To enhance the microbe defence mechanism of fabric, we coated these NRs on fabric test samples and investigated the bacterial growth on it. Results: XRD and FESEM studies reveal the dimension of the synthesized products in nano range. These nanorods are of high density and surface roughness as per the FESEM study. PL measurement shows the presence of strong UV emission at 382 nm with defect emissions in the blue-green region opening up the path for ZnO to be used in fabrication of optoelectronic devices. PC study reveals that 89% degradation of methylene blue (MB) dye is achievable in 180 min using these ZnO catalysts. The anti-bacterial study shows that the minimum inhibitory concentration (MIC) of ZnO nanorods coated on the fabric against S. aureus is found to be 3.5 mg/ml which is the minimum as compared to E. coli (7.5 mg/ml) and B. subtilis (5.5 mg/ml). The study further enunciates that fabric coated with ZnO samples exhibited considerably high inhibition activity toward S. aureus. Conclusion: The study shows that ZnO NRs can be effectively used for fabrication of UV-LASER/LED. Photocatalytic efficiency of ZnO will be useful for degradation of organic dyes controlling environment pollution. It further enunciates that fabric coated with ZnO samples exhibited considerably high inhibition activity toward S. aureus (skin bacteria) which will be helpful in defending microbes if used in surgical cotton bandages


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 513
Author(s):  
Anna Rabajczyk ◽  
Maria Zielecka ◽  
Krzysztof Cygańczuk ◽  
Łukasz Pastuszka ◽  
Leszek Jurecki

A recent trend in the field of membrane research is the incorporation of nanoparticles into polymeric membranes, which could produce synergistic effects when using different types of materials. This paper discusses the effect of the introduction of different nanometals such as silver, iron, silica, aluminum, titanium, zinc, and copper and their oxides on the permeability, selectivity, hydrophilicity, conductivity, mechanical strength, thermal stability, and antiviral and antibacterial properties of polymeric membranes. The effects of nanoparticle physicochemical properties, type, size, and concentration on a membrane’s intrinsic properties such as pore morphology, porosity, pore size, hydrophilicity/hydrophobicity, membrane surface charge, and roughness are discussed, and the performance of nanocomposite membranes in terms of flux permeation, contaminant rejection, and antifouling capability are reviewed. The wide range of nanocomposite membrane applications including desalination and removal of various contaminants in water-treatment processes are discussed.


2021 ◽  
Vol 36 (2) ◽  
pp. 93-110
Author(s):  
Princy Philip ◽  
Tomlal Jose ◽  
Sarath KS ◽  
Sunny Kuriakose

Silver nanoparticles with 5–10 nm diameters are synthesised using Couroupita guianensis flower extract. The synthesised silver nanoparticles found to show good antimicrobial activity against gram negative and gram positive bacteria. Poly(methyl methacrylate) nanofibers with pristine, surface roughened and coaxial hollow forms are prepared by electrospinning. The structural and morphological properties of these pure and structurally modified poly(methyl methacrylate) nanofibers are evidenced by various analytical techniques. The antimicrobial studies of poly(methyl methacrylate) nanofibers having different architectures incorporated with silver nanoparticles are carried out. It is found that, all the three forms of poly(methyl methacrylate) nanofibers incorporated with silver nanoparticles show antibacterial properties against both gram positive and gram negative bacteria. Among these, surface roughened poly(methyl methacrylate) nanofibers incorporated with silver nanoparticles show highest antibacterial activity than the other two structural forms. The present study offers an alternative to the existing optical lenses. People especially those who suffer from eye problems can protect their eyes in a better way from infectious agents by wearing optical lens made from C. guianensis stabilised silver nanoparticles incorporated poly(methyl methacrylate) nanofibers than that made from pure poly(methyl methacrylate) nanofibers or films.


2021 ◽  
Vol 138 ◽  
pp. 106850
Author(s):  
A.S. Nikolov ◽  
N.E. Stankova ◽  
D.B. Karashanova ◽  
N.N. Nedyalkov ◽  
E.L. Pavlov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document