scholarly journals Antibacterial, Antifungal, Photocatalytic Activities and Seed Germination Effect of Mycosynthesized Silver Nanoparticles using Fusarium oxysporum

2021 ◽  
Vol 11 (4) ◽  
pp. 12082-12091

The present research work is committed towards the green synthesis of silver nanoparticles (AgNP) using fungus Fusarium oxysporum and later analyzed for antibacterial, antifungal, photocatalytic activity, and enhancement of seed germination. The mycosynthesized AgNP were characterized by UV-Visible spectroscopy, Fourier Transform InfraRed (FTIR) spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD). The UV-Visible spectra showed an absorption peak at 450 nm confirmed the formation of AgNP. A homogenous dispersion of spherical shape nanoparticles with a size of 40 nm was confirmed by SEM. The mycosynthesized AgNP affected bacteria more than a fungal strain. The AgNP could photo-catalytically degraded methylene blue. It enhanced seed germination of Vigna radiata (mung beans) appropriate conditions where the AgNP at 0.5 mg/ml can be utilized for growth improvement of commercially available crops. In conclusion, the AgNP can be synthesized by fungus F. oxysporum and potentially used as an antimicrobial agent, photocatalysis, and seed germination.

Author(s):  
B. Anandh ◽  
A. Muthuvel ◽  
M. Emayavaramban

The present investigation demonstrates the formation of silver nanoparticles by the reduction of the aqueous silver metal ions during exposure to the Lagenaria siceraria leaf extract. The synthesized AgNPs have characterized by UV-visible spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) techniques. AgNPs formation has screened by UV-visible spectroscopy through colour conversion due to surface plasma resonance band at 427 nm. X-ray diffraction (XRD) confirmed that the resulting AgNPs are highly crystalline and the structure is face centered cubic (fcc). FT-IR spectrum indicates the presence of different functional groups present in the biomolecules capping the nanoparticles. Further, inhibitory activity of AgNPs and leaf extract were tested against human pathogens like gram-pastive (Staphylococcus aureus, Bacillus subtilis), gram-negative (Escherichia coli and Pseudomonas aeruginosa). The results indicated that the AgNPs showed moderate inhibitory actions against human pathogens than Lagenaria siceraria leaf extract, demonstrating its antimicrobial value against pathogenic diseases


2020 ◽  
Vol 990 ◽  
pp. 302-305
Author(s):  
Razif Nordin ◽  
Nadia Latiff ◽  
Rizana Yusof ◽  
Wan Izhan Nawawi ◽  
M.Z. Salihin ◽  
...  

Commercial grade ZnO were sieved into particle size of 38 to 90 μm at room temperature. X-ray diffraction (XRD) pattern confirms the hexagonal wurzite structure of ZnO microparticles. Irregular shapes of ZnO microparticles were observed by scanning electron microscope (SEM). Fourier transform infrared spectra (FTIR) confirmed the presence of Zn-O band. In addition, Uv-visible spectra (UV-Vis) were empolyed to estimate the band gap energy of ZnO microparticles.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Honghui Teng ◽  
Shukun Xu ◽  
Dandan Sun ◽  
Ying Zhang

Fe-doped TiO2nanotubes (Fe-TNTs) have been prepared by ultrasonic-assisted hydrothermal method. The structure and composition of the as-prepared TiO2nanotubes were characterized by transmission electron microscopy, X-ray diffraction, and UV-Visible absorption spectroscopy. Their photocatalytic activities were evaluated by the degradation of MO under visible light. The UV-visible absorption spectra of the Fe-TNT showed a red shift and an enhancement of the absorption in the visible region compared to the pure TNT. The Fe-TNTs were provided with good photocatalytic activities and photostability and under visible light irradiation, and the optimum molar ratio of Ti : Fe was found to be 100 : 1 in our experiments.


2016 ◽  
Vol 5 (6) ◽  
Author(s):  
Brajesh Kumar ◽  
Kumari Smita ◽  
Luis Cumbal

AbstractThe present report summarizes an eco-friendly approach for the biosynthesis of silver nanoparticles (AgNPs) using the leaf extract of lavender. Initially, the synthesis of AgNPs was visually observed by the appearance of a wine red color. The optical property, morphology, and structure of as-synthesized AgNPs were characterized by UV-visible spectroscopy, dynamic light scattering, transmission electron microscopy, and X-ray diffraction analyses. All characterization data revealed the formation of crystalline and spherical AgNPs (Ag/Ag


2011 ◽  
Vol 109 ◽  
pp. 174-177 ◽  
Author(s):  
Yu Li Shi ◽  
Qi Zhou ◽  
Li Yun Lv ◽  
Wang Hong

A facile method for the synthesis of silver nanoparticles (NPs) has been developed by using sodium phosphate (Na3PO4) as stabilizing agents and glucose the reducing agent, respectively. The obtained silver NPs have been characterized by X-ray diffraction (XRD), UV-visible spectroscopy (UV-vis) and transmission electron microscopy (TEM). It was found that in the presence of sodium phosphate, silver NPs with different morphologies and sizes were obtained. The formation mechanism of diverse silver NPs was studied preliminarily.


Author(s):  
Tevan R ◽  
Saravanan Jayakumar ◽  
Nor Haledah Ahmad Sahimi ◽  
Nur Farah Ain Iqbal ◽  
Iffah Zapri ◽  
...  

Biosynthesis of metal nanoparticles has received a remarkable attention due to their eco-friendly and potential applications in pharmaceutical and medical fields. The searches for natural alternatives to replace biosynthetic nanoparticles have resulted in extensive studies of microalgal derived metal nanoparticles. Since there are very limited reports on Isochrysis sp. in synthesising metal nanoparticles, a novel initiative was taken to induce an environmentally friendly and low cost technique to biosynthesise the silver nanoparticles (AgNPs) using marine microalgae, Isochrysis sp. Further, the synthesised silver nanoparticles were screened against human pathogen for antimicrobial effects. The characterisation of nanoparticles were confirmed by UV visible spectroscopy, field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), and X-ray powder diffraction (XRD). The results obtained from characterisations indicate that the AgNPs have an almost spherical shape with a various size of 98.1 to 193 nm. The synthesised nanoparticles exhibited outstanding antioxidant and antimicrobial activities.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 763
Author(s):  
Pejman Hajipour ◽  
Abbas Bahrami ◽  
Maryam Yazdan Mehr ◽  
Willem Dirk van Driel ◽  
Kouchi Zhang

This paper investigates the photocatalytic characteristics of Ag nanowire (AgNW)/TiO2 and AgNW/TiO2/graphene oxide (GO) nanocomposites. Samples were synthesized by the direct coating of TiO2 particles on the surface of silver nanowires. As-prepared AgNW/TiO2 and AgNW/TiO2/GO nanocomposites were characterized by electron microscopy, X-ray diffraction, UV/visible absorption spectroscopy, and infrared spectroscopy. Transmission electron microscope (TEM) images confirmed the successful deposition of TiO2 nanoparticles on the surface of AgNWs. The photocatalytic activity of synthesized nanocomposites was evaluated using Rhodamine B (RhB) in an aqueous solution as the model organic dye. Results showed that synthesized AgNW/TiO2/GO nanocomposite has superior photocatalytic activities when it comes to the decomposition of RhB.


2021 ◽  
Vol 33 (4) ◽  
pp. 762-766
Author(s):  
BHABANI SHANKAR PANDA ◽  
MOHAMMED ANSAR AHEMAD

The present work concerns on the synthesis of silver nanoparticles at 25 ºC using raw fruits extract of Bakul (Mimusops elengi) tree via chemical reduction route development of poly(vinyl alcohol) PVA-silver polymer nanocomposite films. The nanocomposite films were subjected to characterization by UV-visible, FTIR, X-ray diffraction, field emission scanning electron microscope (FESEM) and thermal studies. The UV-visible spectrum shows a characteristic broad absorption band observed near 465 nm suggesting presence of silver nanoparticles in polymer nanocomposites (PNCs) film. The vibrational band shift of –OH group of poly(vinyl alcohol) in the presence of nanoparticle designated the chemical interaction between –OH group of poly(vinyl alcohol) and silver nanoparticles. The FESEM study confirmed that PVA is not only acted as a capping agent, but also a cross-linking agent. X-ray diffraction study shows that the existence of AgNPs in the poly nanocomposite film and nanoaparticles are crystalline in nature. Thermal studies suggest that the enhanced thermal stability is because of the good packing of the polar crystallites in β-PVA composites as compared to the non-polar α-phase of neat poly(vinyl alcohol) (PVA).


2020 ◽  
pp. 1307-1312
Author(s):  
Wadaa S. Hussein ◽  
Ala' Fadhil Ahmed ◽  
Kadhim A. Aadim

The current study was achieved on the effects of laser energy and annealing temperature on x-ray structural and optical properties, such as the UV-Visible spectra of cadmium sulfide (CdS). The films were prepared using pules laser deposition technique (PLD) under vacuum at a pressure of 2.5×10-2 mbar with different laser energies (500-800 mJ) and annealing at a temperature of 473K. X-ray diffraction patterns and intensity curves for the CdS showed that the formation of CdS multi-crystallization films at all laser energies. The optical properties of the films were studied and the variables affecting them were investigated in relation to laser energy and changes in temperature.


Author(s):  
Dipika Rathod ◽  
Illa Patel ◽  
Priyanka Chaudhari ◽  
Anita Solanki Solanki

The green synthesis of metallic nanoparticles is the simplest, affordable and eco-friendly approach, which attracted researchers because of their immense applications. The plant-mediated synthesis of nanoparticles plays an important role in the field of nanobiotechnology as they devoid of harmful chemicals. Plenty of reports were available on synthesis of silver nanoparticles using the vegetative parts of plant especially foliar/leaf parts but reports on floral/flower parts utilized for silver nanoparticles synthesis were limited. Although flowers were found as potential source of many important phytochemicals which can be used for treatments of many diseases and Butea monosperma Lam. Flowers were utilized for curing several diseases so, here its extract were used for synthesis of silver nanoparticles by using it as capping and stabilizing agent. The present study, deals with synthesis of silver nanoparticles (AgNPs) from Butea monosperma Lam. Flower extracts through greener approach and then synthesized AgNPs were characterized using UV- visible spectrometry, X-Ray diffraction (XRD), Fourier transform infra-red (FTIR) spectroscopy and Scanning electron microscopy (SEM) which confirms its synthesis from silver metal. Further, the anti-bacterial properties of the synthesized silver nanoparticles were studied, and the results revealed that the flower mediated silver nanoparticles had showed strong anti-bacterial activity against Pseudomonas sp., Escherichia coli, Bacillus subtilis and Staphylococcus aureus.


Sign in / Sign up

Export Citation Format

Share Document