scholarly journals BIOSYNTHESIS OF SILVER NANOPARTICLES USING MARINE MICROALGAE ISOCHRYSIS sp.

Author(s):  
Tevan R ◽  
Saravanan Jayakumar ◽  
Nor Haledah Ahmad Sahimi ◽  
Nur Farah Ain Iqbal ◽  
Iffah Zapri ◽  
...  

Biosynthesis of metal nanoparticles has received a remarkable attention due to their eco-friendly and potential applications in pharmaceutical and medical fields. The searches for natural alternatives to replace biosynthetic nanoparticles have resulted in extensive studies of microalgal derived metal nanoparticles. Since there are very limited reports on Isochrysis sp. in synthesising metal nanoparticles, a novel initiative was taken to induce an environmentally friendly and low cost technique to biosynthesise the silver nanoparticles (AgNPs) using marine microalgae, Isochrysis sp. Further, the synthesised silver nanoparticles were screened against human pathogen for antimicrobial effects. The characterisation of nanoparticles were confirmed by UV visible spectroscopy, field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), and X-ray powder diffraction (XRD). The results obtained from characterisations indicate that the AgNPs have an almost spherical shape with a various size of 98.1 to 193 nm. The synthesised nanoparticles exhibited outstanding antioxidant and antimicrobial activities.

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 212
Author(s):  
Hemmat M. Abd-Elhady ◽  
Mona A. Ashor ◽  
Abdelkader Hazem ◽  
Fayez M. Saleh ◽  
Samy Selim ◽  
...  

The ability of microorganisms to reduce inorganic metals has launched an exciting eco-friendly approach towards developing green nanotechnology. Thus, the synthesis of metal nanoparticles through a biological approach is an important aspect of current nanotechnology. In this study, Streptomyces aizuneusis ATCC 14921 gave the small particle of silver nanoparticles (AgNPs) a size of 38.45 nm, with 1.342 optical density. AgNPs produced by Streptomyces aizuneusis were characterized by means of UV-VIS spectroscopy and transmission electron microscopy (TEM). The UV-Vis spectrum of the aqueous solution containing silver ion showed a peak between 410 to 430. Moreover, the majority of nanoparticles were found to be a spherical shape with variables between 11 to 42 nm, as seen under TEM. The purity of extracted AgNPs was investigated by energy dispersive X-ray analysis (EDXA), and the identification of the possible biomolecules responsible for the reduction of Ag+ ions by the cell filtrate was carried out by Fourier Transform Infrared spectrum (FTIR). High antimicrobial activities were observed by AgNPs at a low concentration of 0.01 ppm, however, no deleterious effect of AgNPs was observed on the development and occurrence of Drosophila melanogaster phenotype. The highest reduction in the viability of the human lung carcinoma and normal cells was attained at 0.2 AgNPs ppm.


2021 ◽  
Vol 11 (4) ◽  
pp. 12082-12091

The present research work is committed towards the green synthesis of silver nanoparticles (AgNP) using fungus Fusarium oxysporum and later analyzed for antibacterial, antifungal, photocatalytic activity, and enhancement of seed germination. The mycosynthesized AgNP were characterized by UV-Visible spectroscopy, Fourier Transform InfraRed (FTIR) spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD). The UV-Visible spectra showed an absorption peak at 450 nm confirmed the formation of AgNP. A homogenous dispersion of spherical shape nanoparticles with a size of 40 nm was confirmed by SEM. The mycosynthesized AgNP affected bacteria more than a fungal strain. The AgNP could photo-catalytically degraded methylene blue. It enhanced seed germination of Vigna radiata (mung beans) appropriate conditions where the AgNP at 0.5 mg/ml can be utilized for growth improvement of commercially available crops. In conclusion, the AgNP can be synthesized by fungus F. oxysporum and potentially used as an antimicrobial agent, photocatalysis, and seed germination.


Author(s):  
Md. Abdullah Al Masud ◽  
Hamid Shaikh ◽  
Md. Shamsul Alam ◽  
M. Minnatul Karim ◽  
M. Abdul Momin ◽  
...  

Abstract Background The green synthesis strategy of metallic nanoparticles (NPs) has become popular due to being environmentally friendly. Stable silver nanoparticles (AgNPs) have been synthesized by natural products such as starch, soy protein, various extract of leaves, barks, and roots functioning both as reducing and stabilizing agents. Likewise, silk sericin (SS) is a globular protein discarded in the silk factory might be used for NP synthesis. In this research, we focus on the green synthesis and stabilization of AgNPs by SS as well as assessment of their antibacterial activities against some drug-resistant pathogen. Results SS was extracted from Bombyx mori silkworm cocoons in an aqueous medium. 17 w/w% of dry sericin powder with respect to the cocoon’s weight was obtained by freeze-drying. Furthermore, AgNPs conjugated to sericin, i.e., SS-capped silver nanoparticles (SS-AgNPs) were synthesized by easy, cost-effective, and environment-friendly methods. The synthesized SS-AgNPs were characterized by UV-visible spectroscopy, Fourier-transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy, transmission electron microscopy (TEM), and X-ray diffraction measurement. It has been found from the absorbance of UV-visible spectroscopy that a higher percent of SS-AgNPs was obtained at a higher concentration of silver nitrate solution. FTIR-ATR spectra showed that the carboxylate groups obtained from silk sericin act as a reducing agent for the synthesis of silver nanoparticles, while NH2+ and COO− act as a stabilizer of AgNPs. The X-ray diffractogram of SS-AgNPs was quite different from AgNO3 and sericin due to a change in the crystal structure. The diameter of AgNPs was around 20–70 nm observed using TEM. The synthesized SS-AgNPs exhibited strong antibacterial activity against multidrug-resistant pathogens, Escherichia coli and Pseudomonas aeruginosa. Minimal inhibitory/bactericidal concentrations against E. coli and P. aeruginosa were 20μg/mL. Conclusions This study encourages the use of Bombyx mori for the ecofriendly synthesis of SS-AgNPs to control multidrug-resistant microorganisms.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 97
Author(s):  
Suresh V. Chinni ◽  
Subash C. B. Gopinath ◽  
Periasamy Anbu ◽  
Neeraj Kumar Fuloria ◽  
Shivkanya Fuloria ◽  
...  

The present study was planned to characterize and analyze the antimicrobial activity of silver nanoparticles (AgNP) biosynthesized using a Coccinia indica leaf (CIL) ethanolic extract. The present study included the preparation of CIL ethanolic extract using the maceration process, which was further used for AgNP biosynthesis by silver nitrate reduction. Biosynthetic AgNPs were characterized using UV–Visible spectrometry, zeta potential analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and energy-dispersive X-ray (EDX) spectrometry. The biogenic AgNP and CIL extracts were further investigated against different bacterial strains for their antimicrobial activity. The surface plasmon resonance (SPR) signal at 425 nm confirmed AgNP formation. The SEM and TEM data revealed the spherical shape of biogenic AgNPs and size in the range of 8 to 48 nm. The EDX results verified the presence of Ag. The AgNPs displayed a zeta potential of −55.46 mV, suggesting mild AgNP stability. Compared to Gram-positive bacteria, the biogenic AgNPs demonstrated high antibacterial potential against Gram-negative bacteria. Based on the results, the current study concluded that AgNPs based on CIL extract have strong antibacterial potential, and it established that AgNP biosynthesis using CIL ethanol extract is an effective process.


RSC Advances ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 2804-2837
Author(s):  
Chhangte Vanlalveni ◽  
Samuel Lallianrawna ◽  
Ayushi Biswas ◽  
Manickam Selvaraj ◽  
Bishwajit Changmai ◽  
...  

Herein, we have reviewed new findings in the research domain of the green synthesis of silver nanoparticles using different plant extracts and their potential applications as antimicrobial agents covering the literature since 2015.


Author(s):  
B. Anandh ◽  
A. Muthuvel ◽  
M. Emayavaramban

The present investigation demonstrates the formation of silver nanoparticles by the reduction of the aqueous silver metal ions during exposure to the Lagenaria siceraria leaf extract. The synthesized AgNPs have characterized by UV-visible spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) techniques. AgNPs formation has screened by UV-visible spectroscopy through colour conversion due to surface plasma resonance band at 427 nm. X-ray diffraction (XRD) confirmed that the resulting AgNPs are highly crystalline and the structure is face centered cubic (fcc). FT-IR spectrum indicates the presence of different functional groups present in the biomolecules capping the nanoparticles. Further, inhibitory activity of AgNPs and leaf extract were tested against human pathogens like gram-pastive (Staphylococcus aureus, Bacillus subtilis), gram-negative (Escherichia coli and Pseudomonas aeruginosa). The results indicated that the AgNPs showed moderate inhibitory actions against human pathogens than Lagenaria siceraria leaf extract, demonstrating its antimicrobial value against pathogenic diseases


2021 ◽  
Author(s):  
Kadriye Ozlem saygi ◽  
Birgul Kacmaz ◽  
Serdar Gul

Abstract Bacterial infections are one of the most serious health problems all over the world, which cause need for the discovery of new drug. Since antibiotic resistance is a major threat to both humans and the environment, there is a need for studies on the antimicrobial properties of different forms of traditionally used plants. Herein, the seeds of coriander were used to isolate essential oil (EO) and to synthesise silver nanoparticles (C-AgNPs). The major oil constituents were characterized by GC-MS as Linalool (79.12%), Camphor (6.16%), γ-Terpinene (2.82%) and α-Pinene (2.67%). The synthesized AgNPs were characterized by UV-Visible spectrophotometry, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX), X-ray difraction (XRD) and Fourier Tranmission Infrared (FTIR). The surface plasmon resonance (SPR) of C-AgNPs at 437 nm was recorded on the UV-Vis spectrometer. The spherical and homogenous of AgNPs was presented in SEM images. EDX showed elemental distribution and confirmed AgNPs. A characteristic intense peak was at 3.0 keV. The antibacterial activities of the essential oil and AgNPs form of coriander seed against Staphylococcus aureus ATCC 29213 and Escherichia coli ATCC 25922 bacteria were investigated by broth microdilution test. AgNPs and essential oil of coriander can be expected to provide future opportunities in nanomedicine and materials science. AgNPs can be displayed synergistic antimicrobial effect when used in combination with essential oil.


2020 ◽  
pp. 152808372092473 ◽  
Author(s):  
Suchart Siengchin ◽  
Pawinee Boonyasopon ◽  
Vajja Sadanand ◽  
Anumakonda Varada Rajulu

In the present work, nanocomposite cellulose fabrics with in situ generated silver nanoparticles were prepared by bioreduction method employing aqueous dispersion of low-cost natural turmeric powder as a reducing agent and different concentrated aqueous AgNO3 as source solutions. The prepared nanocomposite cellulose fabrics were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and antibacterial tests. The nanocomposite cellulose fabrics had roughly spherical silver nanoparticles in the size range of 41–130 nm with an overall average of 78 nm. The X-ray analysis indicated the generation of both silver nanoparticles and Ag2O nanoparticles in the nanocomposite cellulose fabrics. The nanocomposite cellulose fabrics retained the generated AgNPs even after repeated detergent washings. The prepared nanocomposite cellulose fabrics exhibited excellent antibacterial activity against both the Gram-negative and Gram-positive bacteria and hence can be considered as antibacterial hospital-bed materials, apparels, etc.


Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1716 ◽  
Author(s):  
Muna Ali ◽  
Kareem Mosa ◽  
Ali El-Keblawy ◽  
Hussain Alawadhi

Nanoparticle (NP) synthesis by biological systems is more cost-effective, safe, and environmentally friendly when compared to currently used chemical and physical methods. Although many studies have utilized different plant extracts to synthesize NPs, few studies have incorporated living plants. In this study, silver nanoparticles (AgNPs) were synthesized exogenously by Tephrosia apollinea living plant system under the combined stresses of silver nitrate and different levels of drought stress simulated by Polyethylene glycol (PEG) (0, −0.1, −0.2, and −0.4 MPa for three and six days). Biomass, cell death, and H2O2 content were evaluated to determine the toxicological effect of the treatments on the plant. More severe effects were detected in day 6 plants compared to day 3 plants, and at higher drought levels. UV-visible spectrum, energy dispersive X-ray spectroscopy, X-ray diffraction, scanning electron microscope, and Fourier transform infrared spectroscopy were used to detect and characterize the T. apollinea synthesized NPs. The shapes of the NPs were spherical and cubic with different phytochemicals being the possible capping agents. Broth microdilution was used to determine the antimicrobial activity of the NPs against Escherichia coli and Staphylococcus aureus. In this case, antimicrobial activity increased at higher PEG concentrations. Bactericidal effects were observed against E. coli, while only bacteriostatic effects were detected against S. aureus.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
P. Barone ◽  
F. Stranges ◽  
M. Barberio ◽  
D. Renzelli ◽  
A. Bonanno ◽  
...  

The optical and chemical properties of Ag/TiO2nanocomposites were investigated to explore the possibilities of incorporating these new materials in Gratzel photoelectrochemical cells. The nanocomposites were obtained doping TiO2, in both allotropic species anatase and rutile, with silver nanoparticles (grown by laser ablation process). X-ray photoelectron data indicate the absence of Ag-Ti chemical bonds, while measurements of photoluminescence and optical absorbance in UV-visible range show a quench in photoluminescence emission of about 50% and an increase in visible absorbance of about 20%. Measurements of optical band gap, obtained by Tauc’s equation, indicate a variation of about 1.6 eV.


Sign in / Sign up

Export Citation Format

Share Document