scholarly journals Phytochemical Screening, Chemical Constituents, Traditional Medicine Usage, Pharmacological Effect, Metabolism and Pharmacokinetics of Semen armeniacae

2021 ◽  
Vol 12 (3) ◽  
pp. 3186-3197

Semen armeniacae refers to the seeds of Prunus armeniaca L. (Rosaceae). The Prunus armeniaca L. plant is spreading in the Korean peninsula, China, India, Japan, North Africa, and the United States of America. The Prunus armeniaca contains 3% amygdalin, titratable acidity, sugars (saccharose, fructose, and glucose), and organic acids (citric and malic acids) in addition to prunasin and mandelonitrile. Semen armeniacae is used for the treatment of asthma and cough (with expectoration and fever). It is used in constipation therapy. It is also used as eardrops for inflammation and tinnitus and the treatment of skin diseases. The pharmacological effect of Semen armeniacae includes experimental and clinical pharmacology. Experimental pharmacology includes anti-cholinesterase, neuroprotective, analgesic, antipyretic, antitumor, antibacterial, antimicrobial, antifungal, and antitussive activities. Decoction of Semen armeniacae to 2275 patients with COVID-19 improves clinical parameters such as lung state, clinical cure rate, number of cough reduction cases, symptom score of cough, viral nucleic acid testing, and inflammatory biomarkers. Oral intake of Semen armeniacae extract for 28 days did not cause any hematological, biochemical, or histological changes in rats. The Prunus armeniaca plant declines oxidative stress, inflammation, fat degeneration, and necrosis in alcohol-induced in-vivo and in-vitro liver injury models. There is no effect on fertility in rats after eating Semen armeniacae for 5 weeks. The average daily dose= 3-9 g of Semen armeniacae rinsing in boiling water then adding to a decoction. In conclusion, Semen armeniacae has anti-cholinesterase, neuroprotective, analgesic, antipyretic, antitumor, antibacterial, antimicrobial, antifungal, and antitussive activities.

2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Pollyanna Francielli de Oliveira ◽  
Suzana Amorim Mendes ◽  
Nathália Oliveira Acésio ◽  
Luis Claudio Kellner Filho ◽  
Leticia Pereira Pimenta ◽  
...  

The medicinal plant Vochysia divergens is a colonizing tree species of the Pantanal, a unique and little explored wetland region in Brazil. This species is used in folk medicine as syrups and teas to treat respiratory infections, digestive disorders, asthma, scarring, and skin diseases. The objectives of this study were to evaluate the antioxidant, cytotoxic, and genotoxic potential of the ethanolic extract of Vochysia divergens leaves (VdE), as well as the influence of VdE and its major component (the flavone 3′,5-dimethoxy luteolin-7-O-β-glucopyranoside; 3′5 DL) on MMS-induced genotoxicity. The extract significantly reduced the viability of V79 cells in the colorimetric XTT assay at concentrations ≥ 39 μg/mL. A significant increase in micronucleus frequencies was observed in V79 cell cultures treated with VdE concentrations of 160 and 320 μg/mL. However, animals treated with the tested doses of VdE (500, 1000, and 2000 mg/kg b.w.) exhibited frequencies that did not differ significantly from those of the negative control group, indicating the absence of genotoxicity. The results also showed that VdE was effective in reducing MMS-induced genotoxicity at concentrations of 20, 40, and 80 μg/mL in the in vitro test system and at a dose of 15 mg/kg b.w. in the in vivo test system. Its major component 3′5 DL exerted no protective effect, suggesting that it is not responsible for the effect of the extract. The results of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay showed that VdE was able to scavenge 92.6% of free radicals. In conclusion, the results suggest that the protective effect of VdE may be related, at least in part, to the antioxidant activity of its chemical constituents.


Nutrients ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2396 ◽  
Author(s):  
Elshamy ◽  
Mohamed ◽  
Essa ◽  
Abd-ElGawad ◽  
Alqahtani ◽  
...  

Background: Plants belonging to the genus Kaempferia (family: Zingiberaceae) are distributed in Asia, especially in the southeast region, and Thailand. They have been widely used in traditional medicines to cure metabolic disorders, inflammation, urinary tract infections, fevers, coughs, hypertension, erectile dysfunction, abdominal and gastrointestinal ailments, asthma, wounds, rheumatism, epilepsy, and skin diseases. Objective: Herein, we reported a comprehensive review, including the traditional applications, biological and pharmacological advances, and phytochemical constituents of Kaempheria species from 1972 up to early 2019. Materials and methods: All the information and reported studies concerning Kaempheria plants were summarized from library and digital databases (e.g., Google Scholar, Sci-finder, PubMed, Springer, Elsevier, MDPI, Web of Science, etc.). The correlation between the Kaempheria species was evaluated via principal component analysis (PCA) and agglomerative hierarchical clustering (AHC), based on the main chemical classes of compounds. Results: Approximately 141 chemical constituents have been isolated and reported from Kaempferia species, such as isopimarane, abietane, labdane and clerodane diterpenoids, flavonoids, phenolic acids, phenyl-heptanoids, curcuminoids, tetrahydropyrano-phenolic, and steroids. A probable biosynthesis pathway for the isopimaradiene skeleton is illustrated. In addition, 15 main documented components of volatile oils of Kaempheria were summarized. Biological activities including anticancer, anti-inflammatory, antimicrobial, anticholinesterase, antioxidant, anti-obesity-induced dermatopathy, wound healing, neuroprotective, anti-allergenic, and anti-nociceptive were demonstrated. Conclusions: Up to date, significant advances in phytochemical and pharmacological studies of different Kaempheria species have been witnessed. So, the traditional uses of these plants have been clarified via modern in vitro and in vivo biological studies. In addition, these traditional uses and reported biological results could be correlated via the chemical characterization of these plants. All these data will support the biologists in the elucidation of the biological mechanisms of these plants.


Medicines ◽  
2020 ◽  
Vol 7 (11) ◽  
pp. 69
Author(s):  
Rajan Logesh ◽  
Niranjan Das ◽  
Anjana Adhikari-Devkota ◽  
Hari Prasad Devkota

Background:Cocculus hirsutus (L.) W.Theob. (Menispermaceae) is a perennial climber distributed mostly in tropical and subtropical areas. The main aim of this article is to collect and analyze the scientific information related to traditional uses, bioactive chemical constituents and pharmacological activities. Methods: Scientific information on C. hirsutus was retrieved from the online bibliographic databases (e.g. MEDLINE/PubMed, SciFinder, Web of Science, Google Scholar and Scopus). Information regarding traditional uses was also acquired from secondary resources including books and proceedings. Results: Different plant parts of C. hirsutus were reported to be used for the treatment of fever, skin diseases, stomach disorders and urinary diseases. Alkaloids such as jasminitine, hirsutine, cohirsitine and their derivatives along with a few flavonoids, triterpene derivatives and volatile compounds were reported from whole plant or different plant parts. Extracts were evaluated for their antimicrobial, antidiabetic, immunomodulatory and hepatoprotective activities among others. Conclusion: Although widely used in traditional medicines, only a few studies have been performed related to chemical constituents. Most of the biological activity evaluations were carried out using in vitro evaluation methods and only a few studies were carried out in animal models. In the future, properly designed in vivo and clinical studies are necessary to evaluate the pharmacological activities of C. hirsutus along with bioassay-guided studies to isolate and identify the active constituents.


2018 ◽  
Vol 24 (9) ◽  
pp. 989-992 ◽  
Author(s):  
Samir Gorasiya ◽  
Juliet Mushi ◽  
Ryan Pekson ◽  
Sabesan Yoganathan ◽  
Sandra E. Reznik

Background: Preterm birth (PTB), or birth that occurs before 37 weeks of gestation, accounts for the majority of perinatal morbidity and mortality. As of 2016, PTB has an occurrence rate of 9.6% in the United States and accounts for up to 18 percent of births worldwide. Inflammation has been identified as the most common cause of PTB, but effective pharmacotherapy has yet to be developed to prevent inflammation driven PTB. Our group has discovered that N,N-dimethylacetamide (DMA), a readily available solvent commonly used as a pharmaceutical excipient, rescues lipopolysaccharide (LPS)-induced timed pregnant mice from PTB. Methods: We have used in vivo, ex vivo and in vitro approaches to investigate this compound further. Results: Interestingly, we found that DMA suppresses cytokine secretion by inhibiting nuclear factor-kappa B (NF-κB). In ongoing work in this exciting line of investigation, we are currently investigating structural analogs of DMA, some of them novel, to optimize this approach focused on the inflammation associated with PTB. Conclusion: Successful development of pharmacotherapy for the prevention of PTB rests upon the pursuit of multiple strategies to solve this important clinical challenge.


Author(s):  
Roohi Mohi-ud-din ◽  
Reyaz Hassan Mir ◽  
Prince Ahad Mir ◽  
Saeema Farooq ◽  
Syed Naiem Raza ◽  
...  

Background: Genus Berberis (family Berberidaceae), which contains about 650 species and 17 genera worldwide, has been used in folklore and various traditional medicine systems. Berberis Linn. is the most established group among genera with around 450-500 species across the world. This comprehensive review will not only help researchers for further evaluation but also provide substantial information for future exploitation of species to develop novel herbal formulations. Objective: The present review is focussed to summarize and collect the updated review of information of Genus Berberis species reported to date regarding their ethnomedicinal information, chemical constituents, traditional/folklore use, and reported pharmacological activities on more than 40 species of Berberis. Conclusion: A comprehensive survey of the literature reveals that various species of the genus possess various phytoconstituents mainly alkaloids, flavonoid based compounds isolated from different parts of a plant with a wide range of pharmacological activities. So far, many pharmacological activities like anti-cancer, anti-hyperlipidemic, hepatoprotective, immunomodulatory, anti-inflammatory both in vitro & in vivo and clinical study of different extracts/isolated compounds of different species of Berberis have been reported, proving their importance as a medicinal plant and claiming their traditional use.


Sinusitis ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 71-89
Author(s):  
Ganesh Chandra Jagetia

Oroxylum indicum, Sonapatha is traditionally used to treat asthma, biliousness, bronchitis, diarrhea, dysentery, fevers, vomiting, inflammation, leukoderma, skin diseases, rheumatoid arthritis, wound injury, and deworm intestine. This review has been written by collecting the relevant information from published material on various ethnomedicinal and pharmacological aspects of Sonapatha by making an internet, PubMed, SciFinder, Science direct, and Google Scholar search. Various experimental studies have shown that Sonapatha scavenges different free radicals and possesses alkaloids, flavonoids, cardio glycosides, tannins, sterols, phenols, saponins, and other phytochemicals. Numerous active principles including oroxylin A, chrysin, scutellarin, baicalein, and many more have been isolated from the different parts of Sonapatha. Sonapatha acts against microbial infection, cancer, hepatic, gastrointestinal, cardiac, and diabetic disorders. It is useful in the treatment of obesity and wound healing in in vitro and in vivo preclinical models. Sonapatha elevates glutathione, glutathione-s-transferase, glutathione peroxidase, catalase, and superoxide dismutase levels and reduces aspartate transaminase alanine aminotransaminase, alkaline phosphatase, lactate dehydrogenase, and lipid peroxidation levels in various tissues. Sonapatha activates the expression of p53, pRb, Fas, FasL, IL-12, and caspases and inhibited nuclear factor kappa (NF-κB), cyclooxygenase (COX-2), tumor necrosis factor (TNFα), interleukin (IL6), P38 activated mitogen-activated protein kinases (MAPK), fatty acid synthetase (FAS), sterol regulatory element-binding proteins 1c (SREBP-1c), proliferator-activated receptor γ2 (PPARγ2), glucose transporter (GLUT4), leptin, and HPV18 oncoproteins E6 and E7 at the molecular level, which may be responsible for its medicinal properties. The phytoconstituents of Sonapatha including oroxylin A, chrysin, and baicalein inhibit the replication of SARS-CoV-2 (COVID-19) in in vitro and in vivo experimental models, indicating its potential to contain COVID-19 infection in humans. The experimental studies in various preclinical models validate the use of Sonapatha in ethnomedicine and Ayurveda.


Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2344
Author(s):  
Elisabeth A. George ◽  
Navya Baranwal ◽  
Jae H. Kang ◽  
Abrar A. Qureshi ◽  
Aaron M. Drucker ◽  
...  

(1) The incidence of skin cancer is increasing in the United States (US) despite scientific advances in our understanding of skin cancer risk factors and treatments. In vitro and in vivo studies have provided evidence that suggests that certain photosensitizing medications (PSMs) increase skin cancer risk. This review summarizes current epidemiological evidence on the association between common PSMs and skin cancer. (2) A comprehensive literature search was conducted to identify meta-analyses, observational studies and clinical trials that report on skin cancer events in PSM users. The associated risks of keratinocyte carcinoma (squamous cell carcinoma and basal cell carcinoma) and melanoma are summarized, for each PSM. (3) There are extensive reports on antihypertensives and statins relative to other PSMs, with positive and null findings, respectively. Fewer studies have explored amiodarone, metformin, antimicrobials and vemurafenib. No studies report on the individual skin cancer risks in glyburide, naproxen, piroxicam, chlorpromazine, thioridazine and nalidixic acid users. (4) The research gaps in understanding the relationship between PSMs and skin cancer outlined in this review should be prioritized because the US population is aging. Thus the number of patients prescribed PSMs is likely to continue to rise.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 132
Author(s):  
Nilufar Z. Mamadalieva ◽  
Davlat Kh. Akramov ◽  
Ludger A. Wessjohann ◽  
Hidayat Hussain ◽  
Chunlin Long ◽  
...  

The genus Lagochilus (Lamiaceae) is native to Central, South-Central, and Eastern Asia. It comprises 44 species, which have been commonly used as herbal medicines for the treatments of various ailments for thousands of years, especially in Asian countries. This review aims to summarize the chemical constituents and pharmacological activities of species from the genus Lagochilus to unveil opportunities for future research. In addition, we provide some information about their traditional uses, botany, and diversity. More than 150 secondary metabolites have been reported from Lagochilus, including diterpenes, flavonoids, phenolic compounds, triterpenoids, iridoid glycosides, lignans, steroids, alkaloids, polysaccharides, volatile, non-volatile and aromatic compounds, lipids, carbohydrates, minerals, vitamins, and other secondary metabolites. In vitro and in vivo pharmacological studies on the crude extracts, fractions, and isolated compounds from Lagochilus species showed hemostatic, antibacterial, anti-inflammatory, anti-allergic, cytotoxic, enzyme inhibitory, antispasmodic, hypotensive, sedative, psychoactive, and other activities.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3977
Author(s):  
Shaoyun Wang ◽  
Xiaozhu Sun ◽  
Shuo An ◽  
Fang Sang ◽  
Yunli Zhao ◽  
...  

Polygoni Multiflori Radix Praeparata (PMRP), as the processed product of tuberous roots of Polygonum multiflorum Thunb., is one of the most famous traditional Chinese medicines, with a long history. However, in recent years, liver adverse reactions linked to PMRP have been frequently reported. Our work attempted to investigate the chemical constituents of PMRP for clinical research and safe medication. In this study, an effective and rapid method was established to separate and characterize the constituents in PMRP by combining ultra-high performance liquid chromatography with hybrid quadrupole-orbitrap mass spectrometry (UHPLC-Q-Exactive Orbitrap-MS). Based on the accurate mass measurements for molecular and characteristic fragment ions, a total of 103 compounds, including 24 anthraquinones, 21 stilbenes, 15 phenolic acids, 14 flavones, and 29 other compounds were identified or tentatively characterized. Forty-eight compounds were tentatively characterized from PMRP for the first time, and their fragmentation behaviors were summarized. There were 101 components in PMRP ethanol extract (PMRPE) and 91 components in PMRP water extract (PMRPW). Simultaneously, the peak areas of several potential xenobiotic components were compared in the detection, which showed that PMRPE has a higher content of anthraquinones and stilbenes. The obtained results can be used in pharmacological and toxicological research and provided useful information for further in vitro and in vivo studies.


Sign in / Sign up

Export Citation Format

Share Document