scholarly journals Mechanical and Tribological Characteristics of Aluminium 2618 Matrix Composite Reinforced with Boron Carbide

2021 ◽  
Vol 12 (4) ◽  
pp. 4544-4556

Aluminium-based alloys are mainly used for bearing and automotive applications, resulting in more wear and tear of the material. Boron Carbide (B4C), hard ceramic materials used as reinforcement in Al2618 matrix material, was fabricated using the stir casting method. The presence and distribution of the B4C particles were confirmed by X-ray diffractometer (XRD) and Scanning Electron Microscopy (SEM). Taguchi’s design of experimental approach was employed to study the wear characteristics using the L27 orthogonal array. Optimization of parameters like applied load (20, 30, and 40 N), sliding distance (400, 600, and 800 m), and sliding speed (1.25, 2.51, and 3.76 m/s) were done using Signal-to-Noise ratio analysis and Analysis of Variance (ANOVA). Results revealed that speed (46.77%) had more influence on wear behavior, followed by sliding distance (34.74%) and load (9.81%). SEM images of the worn-out composite specimens exhibited an adhesive type of wear mechanism with deep grooves from hard B4C particles.

Author(s):  
V Vignesh Kumar ◽  
K Raja ◽  
T Ramkumar ◽  
M Selvakumar ◽  
TS Senthil Kumar

The research article addresses the reciprocating wear behaviour of hybrid AA7075 reinforced with boron carbide and boron nitride through a stir-casting technique. The experiment involved varying wt.% of the secondary particle boron carbide (3, 6 and 9) while boron nitride (3) was kept as constant. The hybrid composites were characterised using scanning electron microscopy coupled with energy dispersive spectroscopy. The hardness and tensile behaviour of the hybrid composites were evaluated. Reciprocating wear behaviour of the hybrid composites were examined using a tribometer by varying the wear parameters such as load and sliding distance. The results revealed that AA7075/6boron carbide/3boron nitride had better hardness, tensile and wear properties. The surface morphology of the wear samples was analysed using SEM.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 989
Author(s):  
Donghyun Lee ◽  
Junghwan Kim ◽  
Sang-Kwan Lee ◽  
Yangdo Kim ◽  
Sang-Bok Lee ◽  
...  

In this study, to evaluate the effect of boron carbide (B4C) addition on the wear performance of aluminum (Al), Al6061 and 5, 10, and 20 vol.% B4C/Al6061 composites were manufactured using the stir casting and hot rolling processes. B4C particles were randomly dispersed during the stir casting process; then, B4C particles were arranged in the rolling direction using a hot rolling process to further improve the B4C dispersion and wear resistance of the composites. Furthermore, a continuous interfacial layer between B4C and the Al6061 matrix was generated by diffusion of titanium (Ti) and chromium (Cr) atoms contained in the Al6061 alloy. Wear depth and width of the composites decreased with increasing B4C content. Furthermore, with B4C addition, coefficient of friction (COF) improved as compared with that of Al6061. The results indicate that interface-controlled, well-aligned B4C particles in the friction direction can effectively increase the wear properties of Al alloys and improve their hardness.


2020 ◽  
Vol 10 (7) ◽  
pp. 986-997
Author(s):  
K. Velavan ◽  
K. Palanikumar

In this investigation, wear behavior of hybrid aluminum metal matrix composites (HMMCs) fabricated by stir casting technique is carried out. Boron carbide and Mica particles are added. The Mica percentage varies from 3–5% in steps of 1% with a constant reinforcement quantity of 10% boron carbide. The dry sliding wear experiments are explored on a pin on disc tribometer. The process variables considered for the study are: Mica mass fraction, sliding speed, load and sliding time, and the response analyzed is wear loss. Box-Behnken design is used for conducting the experiments. The result shown proves that 3% of Mica particle inclusion reduces the wear due to the increase in density. Further increase of mica does not improve the wear resistance. ANOVA results indicate that load and % of Mica are the profoundly influencing parameters. The pin surface is analyzed by using a Scanning Electron Microscope.


2018 ◽  
Vol 24 (6) ◽  
pp. 1
Author(s):  
Khansa Daood AlShamari ◽  
Ihsan Kadhom AlNaimi ◽  
Raad Hameed Majid

Two different composite materials were prepared by stir casting method of AA 6061 alloy as a matrix reinforced with two addition different ceramic materials Al2O3 and B4C of grain size   20 µm by 2.5, 5, 7.5 and10% in weight. The composite material with aluminum alloy as a matrix possesses a unique mechanical properties such as: high specific strength and hardness, low density, and high resistance to corrosion and friction wear. This composite is widely used in automotive parts space and marine applications. Pin-on-disc technique was used to calculate the wear rate for each addition of Al2O3 and B4C particles. Rockwell hardness test and optical micrographs examinations were carried out to analyze, compare, and evaluate the addition of reinforced particles. The results of this investigation appeared that the 7.5% of ceramic particles addition give highest values of the hardness and wear resistance.      


2019 ◽  
Vol 23 (1) ◽  
pp. 198-201 ◽  
Author(s):  
S. Sakthivelu ◽  
M. Meignanamoorthy ◽  
M. Ravichandran ◽  
P. P. Sethusundaram

AbstractThis research made an attempt to synthesize aluminum metal matrix composites through stir casting technique. The matrix material chosen in this study was AA7050 and the reinforcement material was ZrSiO4. The composites AA7050, AA7050-10%ZrSiO4, and AA7050-15%ZrSiO4were used. The wear behavior of the aluminum matrix composites was investigated by using pin-on-disc tribometer. The advanced material has substantial development in tribological behavior when the reinforcement percentage is increased. From the experimental results, it was confirmed that sliding distance of 1200 m, applied load of 3 N and sliding speed of 2 m/s result in minimum wear loss and coefficient of friction, while adding 10%ZrSiO4to the AA7050.


Author(s):  
J. Pradeep Kumar ◽  
D. S. Robinson Smart

This research article focuses on the development of AA7075 alloy reinforced with different wt% of Tantalum Carbide (TaC), Silicon Nitride (Si3N4) and Titanium (Ti) particulates using stir casting. Mechanical characteristics like tensile, compression and microhardness of the developed composites were analysed. High temperature tribological properties of the hybrid MMCs were studied for various input control factors like sliding speed, load and temperature. Design analysis has been executed by Taguchi orthogonal array and ANOVA (Analysis of Variance). The incorporated reinforcements exhibited improved wear resistance at ambient temperature along with elevated temperatures. Monolithic dissemination of reinforcement’s in the prepared composites magnifies the mechanical and tribological characteristics for composites compared to matrix material. From the optimization technique, it was witnessed that Wear Rate and Frictional Coefficient are afflicted by temperature go after load & sliding speed. The optimal amalgamation of control parameters of distinct tribo-responses has been detected.


Author(s):  
Sandeep Kumar Khatkar ◽  
Rajeev Verma ◽  
Suman Kant ◽  
Narendra Mohan Suri

This article statistically investigates the effect of various parameters such as material factors: silicon carbide (SiC) reinforcement, graphite (Gr) reinforcement and mechanical factors: normal load, sliding distance and speed on the sliding wear rate of vacuum stir cast self-lubricating AZ91D-SiC-Gr hybrid magnesium composites. The sliding wear tests have been performed on pin-on-disc tribometer at 10-50N loads, 1-3m/s sliding speed and 1000-2000m sliding distance. It has been examined that hybrid composites yielded improved wear resistance with reinforcement of SiC and solid lubricant graphite. ANOVA and signal-to-noise ratio investigation indicated that applied load was the most critical factor influencing the wear rate, followed by sliding distance. Further, the AZ91D/5SiC/5Gr hybrid composite has exhibited the best wear properties. From the SEM and EDS analysis of worn surfaces, delamination was confirmed as the dominant wear mechanism for AZ91D-SiC-Gr hybrid composites.


Author(s):  
R. Praveenkumar ◽  
P. Periyasamy ◽  
V. Mohanavel ◽  
M.M. Ravikumar

In the recent decades, magnesium matrix composites present a plenty of applications to automotive, marine and aerospace industries. In this work, AZ31B is selected as Mg matrix material and hard Tungsten carbide (WC) particles as reinforcement material. Mg/WC composites reinforced with different weight proportions (0, 5, 10 and 15 wt.%) were made through stir casting method. The worn surface of manufactured Mg/WC composites and base Mg material were examined by scanning electron microscope (SEM). The wear test results denoted that the AZ31B/15 wt% WC composites have excellent tribological behaviour when compared to the base magnesium matrix AZ31B alloy. The yield strength, flexural strength, tensile strength and micro-hardness of the manufactured composites are improved by increasing the WC content. SEM images reveal the homogeneous distribution of WC particles throughout the Mg matrix.


Metal matrix composites are a new course of materials with superior properties to those of the components. Such materials ' machining is distinct from that of traditional materials. So the optimization of machining process parameters becomes inevitable. By applying Taguchi's Signal-to-Noise ratio method, this paper examines the effects of drilling process parameter such as feed, spindle speed, drill material and percentage reinforcement on the drilled hole’s surface roughness. Variance analysis was used to evaluate each system parameter's contribution to surface roughness. The composites were manufactured by stir casting technique using aluminium alloy (LM6) as matrix material and boron carbide particulates at 3%, 6% and 9% by weight as material for the reinforcement. There are four factors investigated each at three levels, so 34 which implies 81 experiments has to be conducted, but by using Design of Experiments approach 27 experiments were conducted using L27 orthogonal array The minimum surface roughness measured for the hole was 1.08 µm at combination of 3000 rpm spindle speed, 50 mm/min feed rate, 3% reinforcement and Carbide drill.


Author(s):  
V. V. Monikandan ◽  
K. Pratheesh ◽  
P. K. Rajendrakumar ◽  
M. A. Joseph

This paper overviews the fabrication, microstructural characteristics, mechanical properties, and tribological behavior of B4C reinforced aluminum metal matrix composites (AMMCs). The stir casting procedure and parameters used to fabricate the Al-B4C composites are discussed. The influence of physical parameters such as applied load, sliding speed, and sliding distance on tribological behavior is analyzed. The role of the mechanically mixed layer (MML) and wear mechanisms on the wear behavior and friction coefficient are emphasized. The overview of tribological behavior revealed that the Al-B4C composites possess excellent abrasion resistance and the ability to operate over a wide range of physical parameters. The Al-B4C composites exhibited better tribological behavior when compared with the composites reinforced with conventional reinforcement particles (SiC).


Sign in / Sign up

Export Citation Format

Share Document