scholarly journals Development of an Interstate Standard for Testing Procedures for Fruit and Berry Harvesters

Author(s):  
E.E. Podolskaya ◽  
◽  
E.V Bondarenko ◽  
I.S. Belimenko ◽  
◽  
...  

Regulations that specify the requirements for fruit and berry harvesters during testing have been determined. The necessity of developing an interstate standard for test methods and software for evaluating these machines in accordance with the new interstate standard is substantiated. The main provisions of the prepared document and uptodate software for accelerated processing and analysis of test results are presented.

2019 ◽  
Vol 2 (1) ◽  
pp. 5
Author(s):  
Hendra Budi Sungkawa ◽  
Inten Ayu Kusuma

Abstract : Pipetting is one of the most important activities in health laboratory analysis. Knowledge of pipetting must be owned by every health laboratory. Students of health analyst as a candidate of health laboratory who will become medical support service unit is expected to be able to do the pipetting precision and accurately. To get a thorough and accurate results then the results of the analysis must be located within a specifc control area and both in precision and accuracy. Precision and accuracy are responsible for analytical interpretation of test results and testing procedures. The method use in this research is the forward method by 61 people research samples which determined by simple random sampling. While the research design used was observational analytics. Based on the results of the research obtained the level of knowledge of respondents research is 71,38; precision pipetting 99,69% and accuracy pipetting 99,58%. From the data that has been obtained then analyzed statistically using tau kendau test. The result indicates that the level of knowledge and precision has a p=0,640 and correlation coeffcient of -0,044 so that the Ho is accepted, meaning there is no relationship between the level of knowledge and precision meaningful. Meanwhile, the level of knowledge and accuracy of the p=0,574 and correlation coeffcient value is -0,053 so that Ho is accepted, it means there is no relationship between the level of knowledge with accuracy. Abstrak: Pemipetan merupakan salah satu kegiatan yang sangat penting dalam analisa laboratorium kesehatan. Pengetahuan pemipetan harus dimiliki oleh setiap tenaga laboratorium kesehatan. Mahasiswa analis kesehatan sebagai calon tenaga laboratorium kesehatan yang akan menjadi unit pelayanan penunjang medis diharapkan mampu melakukan pemipetan dengan teliti dan akurat. Untuk mendapatkan hasil yang teliti dan akurat maka hasil analisa harus terletak di dalam daerah kontrol tertentu dan baik dalam presisi maupun akurasi. Presisi dan akurasi bertanggung jawab terhadap interpretasi analitik hasil pengujian serta prosedur pengujian. Metode yang dilakukan dalam penelitian ini adalah metode forward oleh sampel penelitian sebanyak 61 orang yang ditentukan secara simple random sampling. Sedangkan desain penelitian yang digunakan adalah observasional analitik. Berdasarkan dari hasil penelitian diperoleh nilai tingkat pengetahuan responden penelitian adalah 71,38; presisi pemipetan 99,69% dan akurasi pemipetannya 99,58%. Dari data yang telah didapatkan kemudian dianalisis secara statistik menggunakan uji kendal tau. Untuk tingkat pengetahuan dengan presisi didapatkan hasil nilai p=0,640 dan koefsien korelasi -0,044 sehingga Ho diterima, berarti tidak ada hubungan antara tingkat pengetahuan dan presisi. Untuk tingkat pengetahuan dengan akurasi nilai p=0,574 dan koefsien korelasi adalah -0,053 sehingga Ho diterima, berarti tidak ada hubungan antara tingkat pengetahuan dengan akurasi.


2019 ◽  
Vol 4 (2) ◽  
pp. 176-183
Author(s):  
Ponco Wali

Testing repeat electronic scales with non-automatic scales technical requirements so far is fairly long if not using a calculator or computer. The aim of this research is to compare the repeatability testing method of electronic scales using methods according to the technical requirements of non-automatic scales and the Australian NMI method, both of which refer to OIML R76 in determining the validity or cancellation of electronic scales repeatability testing. This research method is done through repeat testing on 3 samples of electronic scales, then on each electronic scale 2 test methods are performed. The conclusion is that the electronic scales repeatability testing uses the non-automatic scales technical requirements method and the Australian NMI method has some differences although both refer to OIML R76. These differences include several points, namely the charge used, the method of adding additions, the formula for determining electronic scales, and different test results. The Australian NMI method is deemed to make it easier and more time efficient compared to the non-automatic weighing technical requirements method.


Coatings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 670
Author(s):  
Preeda Chaturabong

Chip seal bleeding is influenced by many factors, including design inputs, material properties, and project-specific conditions. It reduces the surface texture of the pavement and thus compromises the safety of the traveling public. Even though factors that bring about premature bleeding are known, currently, no laboratory test methods for evaluating bleeding in chip seals have been specified. The objective of this paper is to present the results of an investigation of the influence factors of asphalt emulsion residue properties measured by the ASTM D7405 multiple stress creep and recovery (MSCR) test, as well as other factors related to chip seal bleeding resistance as measured by the modified loaded wheel test (MLWT). In this study, the MSCR test was used as a tool for evaluating the performance of asphalt emulsions because it has been identified as a potential test related to bleeding in the field. In addition, MLWT was selected as a tool for evaluating chip seal bleeding performance in the laboratory. The results of the MLWT showed that the emulsion application rate (EAR), aggregate gradation, and emulsion properties were significant factors affecting bleeding. The MSCR test was found to be a promising tool for the performance evaluation of asphalt emulsion residue, as the test was able to differentiate between emulsion chemistries and modifications in terms of sensitivity to both temperature and stress. In relation to chip seal bleeding resistance, only the creep compliance (Jnr) obtained from the MSCR test results was identified as a significant property affecting potential for bleeding.


2013 ◽  
Vol 345 ◽  
pp. 64-67
Author(s):  
Jian Hua Zhao ◽  
Rui Bo Zhang ◽  
De Bin Zhu ◽  
Hong Bin Gao

Shock test of marine diesel engine is the important content for ship anti-shock research. Plentiful shock tests of equipments have been carried out abroad, but there is no detailed test methods of diesel engine. According to simulation results, 8-channel acceleration test points are determined. Because diesel engine is working, the measured shock acceleration is interfered by vibration signal. Orthogonal wavelet decomposition and wavelet noise reduction methods are used to separate shock component from test results. The seperated shock component consists of two parts. One is the low-frequency part caused by the shock from diesel foundation and then attenuation through the isolator, the other is the high-frequency part caused by the secondary shock of the retainer.


2015 ◽  
Vol 830-831 ◽  
pp. 191-194
Author(s):  
M. Venkateswara Rao

Conventional tensile test methods are used for service exposed high temperature boiler tubes to evaluate the deterioration in mechanical properties such as tensile strength, yield strength and percentage elongation. The mechanical properties are required to be evaluated periodically as the boiler components undergo material degradation due to aging phenomena. The aging phenomena occurs due to continuous exposure of tubes to high temperature & pressure steam prevailing inside the tubes and high temperature exposure to corrosive combustible gases from the external surfaces within the boiler.A recent developed new technique called small punch testing has been used to evaluate the tensile properties of SA 213T22 grade steel predominantly exists in super-heater and re-heater sections of boiler. The small punch tests have been carried out on the miniature disk shaped specimens of diameter of 8.0 mm and 0.5 mm thickness extracted from both the new and service exposed tubes. Conventional uniaxial tensile tests on standard specimens from the same tube material have also been performed for comparison. The service exposed tubes showed considerable loss in mechanical properties in both the conventional and small punch test results. Correlations of tensile properties have been obtained based on the comparative analysis of both small punch and uniaxial tensile test results. Further, the study showed that an appropriate empirical relation could be generated for new and service exposed materials between both the techniques. Conventional test methods require large quantity of material removal for test samples from in-service components whereas small punch test method needs only a miniature sample extraction. This small punch test technique could also be extended to evaluate the thicker section boiler components such as pipelines and headers in the boiler as a part of remaining life assessment study. Also this technique could be a useful tool to any metallic component where large quantity of sample removal may be difficult or may not be feasible.


1969 ◽  
Vol 9 (04) ◽  
pp. 403-411 ◽  
Author(s):  
B.K. Sinha ◽  
Harvey T. Kennedy

Abstract Recommendations are made for obtaining consistent and reproducible test data on drilling fluids having identical composition. Previously, such a procedure has been difficult to accomplish even when the fluids were mixed in similar equipment. A survey of work in this area indicates that previous methods have been unsatisfactory because previous methods have been unsatisfactory because (1) the muds are extremely sensitive to the duration and violence of agitation during a normal mixing routine, and (2) gelling of the muds occurs before the properties can reach constant values. This gelling is caused by water evaporation resulting from the increase in temperature associated with the agitation. The work shows that these problems largely can be overcome by (1) agitating the constituents of the drilling fluid more vigorously, (2) maintaining a fairly constant temperature, and(3) Protecting the fluid from evaporation. When these steps are followed, the fluid properties approach asymptotic values that do not change by prolonged or accelerated agitation or by aging for a month. The time required to reach asymptotic values or a stabilized state is from 2 to 6 hours and is a function of the mud composition. Introduction Preparation of drilling fluids in the laboratory to determine their suitability to meet specific drilling requirements or to serve as a base fluid to evaluate the effectiveness of thinners, dispersants or other additives normally begins with combining measured quantities of the constituents and stirring them for a short time in a low-speed mixer. This is done to obtain a uniform mixture and to hydrate clays. Then the fluid is further agitated in a higher-speed device (Hamilton Beach mixer or Waring blender) to disperse more thoroughly and clay particles The biggest obstacle in the laboratory investigation of drilling fluids has been the lack of a method of producing a mixture by which reproducible results of the measured properties could be obtained. Numerous investigators have encountered this difficulty. Prior to 1929, density was the only property of mud that customarily was measured. The use of Wyoming bentonite on a large scale after 1929 was mainly responsible for the development of more elaborate testing procedures and for the application of the principles of colloid chemistry to the drilling fluids. Ambrose and Loomis in 1931 were among the first to recognize the plastic flow characteristics of drilling fluids, although Bingham in 1916 had observed The same phenomenon with dilute clay suspensions. Marsh introduced the Marsh funnel for field testing in 1931. By this time, non-Newtonian characteristics of drilling fluids were established. The Stormer and MacMichael viscometers were used to study the rheological properties of the fluids. In the 1930's and early 1940's, the work conducted by several investigators contributed toward a better understanding of drilling fluids. In the mid 1930's, fluid-loss and the associated mud-cake-forming properties of drilling fluids were recognized as important to the behavior of these fluids. The other properties of drilling fluids, including gel strength, pH, and sand content soon were recognized. In 1937, API published its first recommended procedure for test methods. Since that time, these procedures have been revised periodically. The latest edition, RP-13B, was published in 1961 However, in spite of the recognized need for a method of mixing that provides drilling fluids with stabilized properties, no such method previously has been described. SPEJ P. 403


1995 ◽  
Vol 13 (2) ◽  
pp. 127-140 ◽  
Author(s):  
Richard Jupe ◽  
Donald K. Shipley ◽  
William Z. Hudson ◽  
Joseph T. Wanna ◽  
Linda C. Greear

Two bolts of cotton duck fabric that meet military specifications and the purchasing guidelines described by the National Institute of Standards and Technology (NIST) for use as a substrate in "Test Methods for Quantifying the Propensity of Cigarettes to Ignite Soft Furnishings" were tested with smoldering cigarettes to determine the effect of inter-bolt variations on cigarette ignition propensity test outcome. The test was designed around an ASTM method that calls for the control of all known test variables, except for those inherent to the fabric's manufacture. The ignitability of each fabric was determined by testing two sets of 48 replications for each of two experimental cigarettes. The two bolts of cotton duck fabric showed a statistically significant difference in ignitions, independent of environmental and experimental fac tors. Two additional bolts of cotton duck #4 were analyzed. Cigarette ignition test results and the physical parameters of the additional bolts offer evidence that the NIST specifications are difficult to meet and further that test results are extremely sensitive to fabric properties.


1995 ◽  
Vol 32 (2) ◽  
pp. 364-368 ◽  
Author(s):  
Robert G. Horvath

Loading tests were carried out on a model pile embedded in clay to examine the influence of rate of loading on the capacity of the pile. The pile was loaded to failure using constant rate of penetration (CRP), quick maintained loading (QML), and quick continuous loading (QCL) methods of loading. The QCL test models the Statnamic loading test, which has been recently developed in Canada. The CRP tests were used as a reference, and the results were normalized using the CRP test results. The durations of the QML and QCL tests varied from approximately 0.1 s to 17 min, which are significantly faster than normal loading rates. Applied loads and point load were measured using load cells, and top displacement was measured using a displacement transducer. The test results showed an increase in pile capacity with increased rate of loading. Damping was found to be significant for the QCL tests (duration = 0.1 s) and negligible for the QML tests (duration ≥ 10 s). Correcting the results of the QCL tests for damping, using the equilibrium point method developed for Statnamic testing, greatly improved the correlation of the QCL and QML test results. Key words : model piles, axial loading, loading rate, clay, laboratory study, test methods.


2021 ◽  
Author(s):  
Rui Yang ◽  
Xiaobin Li ◽  
Hongxi Li

Abstract In this paper, the vibration characteristics of laminated composite cantilever beam is taken as the research object. Firstly, a vibration formula specific for laminated composite cantilever beam is derived, from which the low order natural frequency of laminated composite cantilever beam is calculated; Secondly, two experimental methods, electrical and optical measurement, are used to study the vibration characteristics of laminated composite cantilever beam, and the influence of different test methods, sensor types, number of measuring points and excitation methods on the test results are analyzed. Through the combination of theory and experiment, a test method that can be applied to the vibration test of composite material laminated structure cantilever beam is obtained. Based on the laser vibration measurement method in the optical method, the results show that the deviation between the experimental data and the theoretical solution is the smallest when the distance between the probe and the specimen is 0.5m and the sampling time is 5s by using the optical fiber vibrometer. The research content of this article can provide a reasonable reference for related vibration test research.


2013 ◽  
Vol 53 (1) ◽  
pp. 227
Author(s):  
Czek Hoong Tan ◽  
Guncel Demircan ◽  
Mathias Satyagraha

Permeability of the cleat system is a key factor controlling the productivity of CSG reservoirs and, therefore, the commerciality of development projects. Well testing is routinely used to provide representative values of coal permeability. The authors’ experience has shown pressure transient behaviour in coal reservoirs to be similar to those in primary porosity systems, with pseudo radial flow frequently observed, and the dual-porosity signature largely absent. Despite the authors’ best efforts in test design, large permeability variation and extremely high skin factors have been seen. The authors have run variations of drill stem tests (DSTs), injection tests, and wireline tests to understand the dependency of results to test methods, and the validity of results obtained. Pertinent examples of each type of test are discussed. Finally, recommendations to reconcile well test results to actual well performance are presented.


Sign in / Sign up

Export Citation Format

Share Document