scholarly journals Impact of Thickness and Substrate on Optical Properties of Zno Thin Films

2020 ◽  
Vol 27 (1) ◽  
pp. 59-68
Author(s):  
S Das ◽  
S Sultana ◽  
I Akter ◽  
SC Mazumdar ◽  
MA Rahman ◽  
...  

During the last decades, ZnO has emerged as the most promising material in optoelectronic and optical applications in the visible region as well as in the infrared and UV region. It is because of the broad direct band gap of 3.37 eV at ambient temperature and high exciton binding energy of 60 meV allowing it to utilize the ultraviolet region. In this investigation, the optical characteristics of ZnO thin film of various thicknesses (300 nm, 600 nm, 900 nm) deposited on Quartz, Fused silica and Sapphire have been studied as a function of wavelength and photon energy. To obtain this, the equations for thin film have been derived, simulated and visualized by Matlab coding language. It is observed that with the increase in the photon energy, the refractive index and extinction coefficient show an increasing tendency. The results represent that among three substrates Fused silica has the lowest refractive index, reflectance and absorbance. In the visible region, the transmission spectra show that the average transmittance of all films is 85%-95%, which is superior for solar continuums. The performance of Fused silica as transparent conducting material is better than other substrates. The present investigation might provide an environment friendly and low cost material for optoelectronic and solar cell devices. Bangladesh Journal of Physics, 27(1), 59-68, June 2020

Photonics ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 112
Author(s):  
Qais M. Al-Bataineh ◽  
Mahmoud Telfah ◽  
Ahmad A. Ahmad ◽  
Ahmad M. Alsaad ◽  
Issam A. Qattan ◽  
...  

We report the synthesis and characterization of pure ZnO, pure CeO2, and ZnO:CeO2 mixed oxide thin films dip-coated on glass substrates using a sol-gel technique. The structural properties of as-prepared thin film are investigated using the XRD technique. In particular, pure ZnO thin film is found to exhibit a hexagonal structure, while pure CeO2 thin film is found to exhibit a fluorite cubic structure. The diffraction patterns also show the formation of mixed oxide materials containing well-dispersed phases of semi-crystalline nature from both constituent oxides. Furthermore, optical properties of thin films are investigated by performing UV–Vis spectrophotometer measurements. In the visible region, transmittance of all investigated thin films attains values as high as 85%. Moreover, refractive index of pure ZnO film was found to exhibit values ranging between 1.57 and 1.85 while for CeO2 thin film, it exhibits values ranging between 1.73 and 2.25 as the wavelength of incident light decreases from 700 nm to 400 nm. Remarkably, refractive index of ZnO:CeO2 mixed oxide-thin films are tuned by controlling the concentration of CeO2 properly. Mixed oxide-thin films of controllable refractive indices constitute an important class of smart functional materials. We have also investigated the optoelectronic and dispersion properties of ZnO:CeO2 mixed oxide-thin films by employing well-established classical models. The melodramatic boost of optical and optoelectronic properties of ZnO:CeO2 mixed oxide thin films establish a strong ground to modify these properties in a skillful manner enabling their use as key potential candidates for the fabrication of scaled optoelectronic devices and thin film transistors.


1997 ◽  
Vol 51 (10) ◽  
pp. 1554-1558 ◽  
Author(s):  
Robert Altkorn ◽  
Ilia Koev ◽  
Amos Gottlieb

We describe a waveguide capillary cell based on a fused-silica tube coated externally with a thin layer of a low-refractive-index ( n = 1.31) fluoropolymer. When filled with a transparent liquid of refractive index greater than that of the fluoropolymer, the cell is capable of transmitting light through total internal reflection. Loss below 1 dB/m is demonstrated throughout much of the visible region for a 530-μm-i.d., 660-μm-o.d. cell filled with water.


2019 ◽  
Vol 11 (11) ◽  
pp. 1148-1154
Author(s):  
Hamza A. Mezerh ◽  
Kadhim J. Kadhim ◽  
Hamad Rahman Jappor

Density functional theory (DFT) have been used to examine the electronic and optical, properties of two-dimensional (2D) indium selenide (InSe) nanosheet. Our calculations indicate that the energy band gap of InSe is indirect and equal to 1.53 eV. It can be seen that for the pristine case, the majority and minority density of state (DOS) are fully symmetric. The optical properties are considered up to 36 eV. Our results established that the absorption starts in the visible region, while the peaks in the ultraviolet region. The refractive index value is 1.84 at zero photon energy limit and increase to 2.31. The high refractive index allows this nanosheet to be utilized as an internal layer coating between the substrate and the ultraviolet absorbing layer. Additionally, we observed that the gained optical properties of InSe nanosheet are in the ultraviolet range and the results are significant. It is expected that from these calculations to provide useful information for further experimental investigations of InSe nanosheet.


2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Tsung-Wei Chang ◽  
Chao-Te Liu ◽  
Wen-Hsi Lee ◽  
Yu-Jen Hsiao

In this study, commercially available white paint is used as a pigmented dielectric reflector (PDR) in the fabrication of a low-cost back electrode stack with an Al-doped ZnO (AZO) layer for thin-film silicon solar cell applications. An initial AZO film was deposited by the radio-frequency magnetron sputtering method. In order to obtain the highest transmittance and lowest resistivity of AZO film, process parameters such as sputtering power and substrate temperature were investigated. The optimal 100-nm-thick AZO film with low resistivity and high transmittance in the visible region are 6.4 × 10−3 Ω·cm and above 80%, respectively. Using glue-like white paint doped withTiO2 nanoparticles as the PDR enhances the external quantum efficiency (EQE) of a microcrystalline silicon absorptive layer owing to the doped white particles improving Fabry–Pérot interference (FPI), which raises reflectance and scattering ability. To realize the cost down requirement, decreasing the noble metal film thickness such as a 30-nm-thick silver reflector film, and a small doping particle diameter (D50 = 135 nm) and a high solid content (20%) lead to FPI improvement and a great EQE, which is attributed to improved scattering and reflectivity because of optimum diameter (Dopt) and thicker PDR film. The results indicate that white paint can be used as a reflector coating in low-cost back-electrode structures in high-performance electronics.


Author(s):  
Wael Abdullah

An inexpensive and easily adaptable to industry scale method is Sol-Gel used to get a double layer anti-reflection coating thin film from SiO2/TiO2 by dip coating technique and we found that the Q H thickness SiO2/TiO2 Double layer thin film gets the best results so, we get a reflectance 0.002-0.02 for ultraviolet region, 0-0.04 for visible region, and 0.004-0.04 for Near infra-red region, and it is better than a thin film from SiO2 mono layer or thin film from TiO2 mono layer individually.


2000 ◽  
Vol 628 ◽  
Author(s):  
Michael Popall ◽  
Ralf Buestrich ◽  
Frank Kahlenberg ◽  
Annika Andersson ◽  
Joacim Haglund ◽  
...  

ABSTRACTPhotopatternable hybrid inorganic-organic polymers with negative resist behaviour have been developed and tested for evaluation in optical and electrical interconnection technology. They are composed of inorganic oxidic structures cross-linked or substituted by organic groups. The synthesis starts from organosilane precursors reacted by sol-gel-processing in combination with organic crosslinking of polymerisable organic functions. As a result of these functionalities the properties of the ORMOCER®s are adjusted to the particular applications. Systematic variation of composition combined with adaptation to micro system technology allows great flexibility in processing. The main features of these materials are:• Combined use as dielectric and passivation layers in electrical systems and devices as well as core and cladding for optical applications enables e/o applications with high integration levels.• Postbaking at moderate temperatures (120 - 170 °C) enables processing on low-cost substrates such as FR-4 (a glass-fibre reinforced epoxy-polymer).• Easily adaptable to thin film technology: spin-on with planarisation > 90 %, via diameters down to 20 μm and high aspect ratio for optical waveguides have been achieved.Synthesis, modification of the resins towards technological needs, their thin film technology and the resulting demonstrators will be discussed.


2015 ◽  
Vol 1109 ◽  
pp. 401-404
Author(s):  
I. Saurdi ◽  
Mohamad Hafiz Mamat ◽  
M.F. Malik ◽  
A. Ishak ◽  
Mohamad Rusop

The nanoStructured ZnO thin films were prepared by Spin coating technique on glass substrates at various layers. The structural and optical properties were characterized by field emission scanning electron microscopy (FESEM) and UV-Vis-NIR respectively. The surface morphology reveals that the nanostructured ZnO thin films become densely packed as the thickness increased. The average particles size of ZnO thin film estimated from FESEM images at different layers of 1, 3, 5, 7, 9 were 20nm, 28nm, 36nm, 39nm and 56nm, respectively. The surface roughness of thin films was increase as the thin film thickness increases. The results show all films are transparent in the visible region (400-800 nm) with average transmittance above 85 %. Meanwhile, the optical band gap was decrease as the film thickness increases. The conductivity of ZnO thin film slightly improved as the thickness increased as measured through two probes 1-V measurement system.


2020 ◽  
Vol 18 (2) ◽  
pp. 109-117
Author(s):  
Oluwaseun Adedokun ◽  
Ismaila Bello ◽  
Olufunke Adedeji ◽  
Kamoru Talabi ◽  
Olaniyi Olatunji ◽  
...  

Aluminum Zinc co-doped Tin Oxide (AZSO) thin film was grown by sol-gel spin coating techniques onto a glass substrate using various doping concentrations (0, 2, 4, 6, and 8 wt%) and the effect of doping on each sample were studied using structural analysis; X-ray Diffraction (XRD) pattern, gravimetric method; thin film thickness and UV photo-spectrometer; optical properties. The results of the XRD were revealed that all the peaks have a tetragonal phase of SnO2, which were oriented at the 110, 101, and 211 planes. The film thickness was observed to vary with doping concentration. In the visible region, all the film samples were exhibited at average transmittance. The coefficient of absorption was gradually increased with an increase in photon energy at a certain level with a decrease in the absorption coefficient as the photon energy increases further. At 550-800 nm range of wavelength, a high extinction coefficient (k) was recorded and the refractive index curves show regular dispersion behavior. The optical conductivity of the films followed a similar pattern, which showed that conductivity increased to a peak at 3.60 eV. The energy bandgap of the film samples (AZSO1 - AZSO5) is 4.095 eV, 4.103 eV, 4.087 eV, 4.114 eV, and 4.106 eV, respectively. The studies show that the properties of Al-Zn co-doped SnO2 films can be explored for optoelectronic applications.


2018 ◽  
Vol 14 (2) ◽  
pp. 5488-5503 ◽  
Author(s):  
Hytham Ahmed Abd El-Ghany

A glass system of composition 44P2O5-38ZnO-2CuO-(16-x)Na2O-xCdO (where, x = 1, 2, 3, 4, and 5 mol%) has been prepared using the conventional melt quenching technique. XRD patterns confirmed the amorphous nature for the prepared samples. Archimedes’ method was used to determine the density of the prepared glass samples then the molar volume was calculated. The optical spectroscopic investigations of the prepared glass samples were carried out over the spectral range (190-1100 nm). The transmission spectra revealed that the prepared glass samples behave as bandpass filters in the visible region. The absorption studies were employed to determine the optical band gap and Urbach energy. The spectral distribution of the refractive index assured the lowest dispersion of the glass in the visible region. Other physical parameters such as the extinction coefficient, the optical conductivity, and the complex dielectric constant were evaluated. The results suggested the practicality of employing such low-cost glass as a bandpass filter for optical applications such as UV-elimination and solar cell protection. The role of CdO as a network modifier in the phosphate glass was revealed.


Sign in / Sign up

Export Citation Format

Share Document