scholarly journals Influence of treated waste phosphogypsum materials on the properties of ordinary portland cement

2015 ◽  
Vol 50 (4) ◽  
pp. 241-250 ◽  
Author(s):  
MS Al Hwaiti

In this study, treatment of phosphogypsum (PG) with lime-water (LWT), sulphuric acid (SAT), a mixture of H2SO4 and HNO3 (AWT), PG-water (ST), and PG-limestone (LT) was attempted to purify PG and improve its quality so that it can be used for manufacture of ordinary Portland Cement (OPC). The treatment of PG removes P2O5, SO3, and MgO impurities into water-leachable phase. Chemical analysis of the treated PG and mechanical properties of OPC mortar after various treatment of PG established improvement of the quality of PG. The purified PG contain less impurities when compared with untreated PG. It was observed that the leachable of P2O5, SO3, and MgO in these samples ranged from 86% to 90%, 69% to 94%, 96% to 99%, respectively, can be achieved using these treatment processes. The major phases Alite (C3S), Belite (C2S), Aluminatetricalcic(C3A), and Tetra-calcium aluminoferrite (C4AF), and control ratios Lime Saturation factor (LSF), Aluminum/Iron ratio (AR), and Silica ratio (SR) were measured. These experimental results showed that the C3S, C3A and C4AF, C2S, LSF, AR, and SR contents fulfilled the requirement of the Jordan Standards and European Standards; hence treated PG can be replaced by natural gypsum. The X-ray diffraction analysis of OPC samples showed that C3S and C2S are major mineral phases, C3A and C4AF represent as minor constituents while the CaO and MgO represent as trace phases. The effect of treated PG on the mechanical properties of OPC mortar was investigated. The OPC produced with purified phosphogypsum were found to have strength properties similar to those produced from mineral gypsum thus fulfilling Jordan Standards and European Standards. The present study indicates that the use of PG in OPC manufacture can solve the waste disposal problem thus cleaning our environment at one hand, on the other hand it can save natural raw materials i.e gypsum.Bangladesh J. Sci. Ind. Res. 50(4), 241-250, 2015

2014 ◽  
Vol 660 ◽  
pp. 312-316
Author(s):  
Mochamad Solikin ◽  
Budi Setiawan

This paper reports an investigation on mechanical properties of high volume fly ash (HVFA) concrete produced using different types of mixing water i.e. tap water and saturated lime water. The mechanical properties of ordinary Portland cement concrete are also investigated as control tests. The concrete were tested for their compressive strength, flexural strength and splitting tensile strength at the curing ages of 56 days. The results showed that strength development of high volume fly ash concrete up to 56 days is lower than ordinary portal cement. In addition, the flexural strength and splitting strength of concrete are lower than ordinary Portland cement. Moreover, the use of saturated lime water as mixing water reduces the mechanical properties of class C high volume fly ash concrete.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 1015 ◽  
Author(s):  
Emy Aizat Azimi ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Petrica Vizureanu ◽  
Mohd Arif Anuar Mohd Salleh ◽  
Andrei Victor Sandu ◽  
...  

A geopolymer has been reckoned as a rising technology with huge potential for application across the globe. Dolomite refers to a material that can be used raw in producing geopolymers. Nevertheless, dolomite has slow strength development due to its low reactivity as a geopolymer. In this study, dolomite/fly ash (DFA) geopolymer composites were produced with dolomite, fly ash, sodium hydroxide, and liquid sodium silicate. A compression test was carried out on DFA geopolymers to determine the strength of the composite, while a synchrotron Micro-Xray Fluorescence (Micro-XRF) test was performed to assess the elemental distribution in the geopolymer composite. The temperature applied in this study generated promising properties of DFA geopolymers, especially in strength, which displayed increments up to 74.48 MPa as the optimum value. Heat seemed to enhance the strength development of DFA geopolymer composites. The elemental distribution analysis revealed exceptional outcomes for the composites, particularly exposure up to 400 °C, which signified the homogeneity of the DFA composites. Temperatures exceeding 400 °C accelerated the strength development, thus increasing the strength of the DFA composites. This appears to be unique because the strength of ordinary Portland Cement (OPC) and other geopolymers composed of other raw materials is typically either maintained or decreases due to increased heat.


2013 ◽  
Vol 438-439 ◽  
pp. 102-107 ◽  
Author(s):  
Wen Kang Guo ◽  
Li Wang ◽  
Shu Yin Wang ◽  
Dao Yin Lan ◽  
Sheng Ping Li

This paper selected two kinds of alkali-free liquid concrete accelerators and tested their compatibility with ordinary Portland cement, Portland cement and moderate heat Portland cement by measuring the setting times, compressive strength and compressive strength ratio of samples. The results showed that the compatibility is good between alkali-free accelerators and two types of cement: ordinary Portland cement and moderate heat Portland cement. However, the compatibility of two accelerators and Portland cement are quite different, the compatibility of AFA-2 accelerator is excellent, but AFA-1 accelerator is very poor. The setting times of alkali-free accelerators is mainly influenced by the mixing materials content, gypsum content, C3A and C3S content. In order to ensure the mechanical properties and durability of concrete, the setting times of new concrete accelerator is not the shorter the better, the appropriate initial and final setting times are 1min30s~5min and 4min~ 12min respectively.


1990 ◽  
Vol 211 ◽  
Author(s):  
C. K. Park ◽  
M. R. Silsbee ◽  
D. M. Roy

AbstractMacro-Defect-Free (MDF) materials are cement-polymer composites exhibiting high flexural strengths and high toughness (for cement based systems). The incorporation of fibers into MDF composites has been found to offer the possibility of increasing both the ultimate flexural strength and toughness of MDF materials prepared using an ordinary portland cement-polyacrylamide matrix.This paper examined the effect of fiber type and fine particles as a packing filler on the resulting mechanical properties. The incorporation of non-traditional materials (for MDF) into the MDF matrix is also discussed.


2013 ◽  
Vol 327 ◽  
pp. 40-43
Author(s):  
Xiao Long Li ◽  
Guo Zhong Li

The ordinary portland cement was used to prepare foamed cement insulation materials by physical foaming method. The influence of different process of fiber added to the foamed cement insulation materials on its performance was studied and the optimum mix ratio of raw materials was determined. The results showed that the glass fire could be evenly dispersed in the slurry by dry adding technology and got better enhanced effect. When the dosage of glass fire was 0.9%, the performance of the foamed cement material as follows: dry density of 318 kg/m3, 3d flexural strength of 0.61MPa, 3d compressive strength of 1.05MPa, thermal conductivity of 0.065W/(m·k). The reinforce mechanism of glass fire was explored.


2021 ◽  
Vol 21 (4) ◽  
pp. 129-137
Author(s):  
Young-Min Kim ◽  
Ji-Su Kim ◽  
Tong-Seok Han

Because of the increase in greenhouse gas emissions and the enforcement of environmental regulations, efforts to reduce CO2 emissions continue. In this study, calcined marl clay was used as a cement replacement material to minimize CO2 emissions by reducing the cement amount used. The raw materials for marl clay were analyzed, and the durability and chemical resistance of concrete produced with marl clay were examined. From the test results, the optimum replacement ratio of calcined marl clay was determined, and the performance difference with ordinary Portland cement (OPC) concrete was identified. The performance of the eco-concrete was comparable to that of the OPC concrete containing marl clay when the cement was optimally replaced with marl clay. Furthermore, the CO2 emission for each specimen was calculated. This study demonstrated the feasibility of developing eco-friendly concrete using calcined marl clay.


2021 ◽  
Vol 6 (2) ◽  
pp. 154-166
Author(s):  
K. S Akorli ◽  
K Danso ◽  
J Ayarkwa ◽  
A Acheampong

In a general sense, concrete is made of cementitious material, aggregates and water but the mix productivity is one issues that affect the amount of strength concrete developed. The concrete mix productivity is a direct function of the amount and quality of the cementitious material. The commonest cementitious material used for concrete in Ghana like other countries in the world is the Ordinary Portland Cement. The research sort to investigate the compressive strength properties of concrete made from some common Ghanaian Ordinary Portland Cement brands mostly used in the countries construction industries. The research strategy adopted was experimental. The research was a cross –sectional studies and used laboratory tests to get information on all cements. Cement grade 42.5N, 42.5R and 32.5R were used. A total of one – hundred and eight (108) concrete cubes were made from nine different brands of Ordinary Portland Cement with a mix design of 1:2:4. No admixtures were used in the mix. It was established that, Ordinary Portland Cement Brand E of grade 42.5R has the highest compressive strength after 28 days. Some of the cement brand with grade 32.5R developed better strength than that of grade 42.5R. Based on the experiment conducted, it can be concluded that for the C15 (1:2:4) and C20 compressive strength as per IS 456:2000, Ordinary Portland Cement Brand E and G of grade 42.5R and Ordinary Portland Cement Brand H and J of grade of 32.5R satisfactory meets the requirement. It implies that some of the Ghanaians Portland Cement developed a satisfactory compressive strength and meets the minimum strength attainment after 28 days’ which is 15 N/mm2. Based on the result, it is recommended that Ordinary Portland Cement Brand E of grade 42.5R should be used for most concrete production and Ordinary Portland Cement Brand J of grade 32.5R can also be used for concrete work in the absence of E 42.5R.   Citation: Akorli, K. S., Danso, K., Ayarkwa, J. and Acheampong, A. (2021). Investigating the Compressive Strength Properties of Concrete Using Some Common Ghanaian Ordinary Portland Cements. International Journal of Technology and Management Research (IJTMR), Vol. 6 (1): Pp.154-166.[Received: March 13, 2021Accepted: September 1, 2021


2019 ◽  
Vol 8 (4) ◽  
pp. 3733-3736

Nowadays geopolymer concretes are subjected to heat curing. A large amount of highly corrosive and the hygroscopic alkaline activators are nowadays generally utilized in producing geopolymer concretes. In this paper, hybrid Ordinary Portland Cement (OPC) and geopolymer mixes are developed. The mainly used activator id the Solid potassium carbonate at different percentage is used as 5% & 10% of the weight of geopolymeric materials and OPC was blended with geopolymeric materials in different proportions. By adding cement, improves all the geopolymer properties except workability. By Applying external heat, it plays an important role in gaining strength. Strength gained by the absence of external heat is achieved by using Portland cement as a partial replacement of geocement. The influence of OPC content on the compressive strength development is investigated, and the optimized amount of solid activator to be used in the mix is also investigated. It is observed that percentage of strength increase decreases from52.24% to 14.77% as the OPC content increased from 20% to 60%.


2022 ◽  
Vol 1048 ◽  
pp. 376-386
Author(s):  
M.S. Riyana ◽  
Dhanya Sathyan ◽  
M.K. Haridharan

SCC (Self compacting concrete) can fill formwork and encloses reinforcing bars under gravity and maintains homogeneity without vibration. SCC shortens the period of construction, guarantees compaction in confined zones, moreover terminates noise due to vibration. The wide spread application of SCC is restricted because of the high cost for the production of SCC with high cement content and chemical admixtures. In order to make the production of SCC economical, and to reduce the high cement content the Ordinary Portland Cement in SCC can be blended with pozzolanic materials like rice husk ash and supplementary cementitious materials like fly ash. In this paper the fresh state properties and mechanical properties such as compressive strength, split tensile strength and flexural strength of SCC with ternary blends of rice husk ash (RHA) and fly ash (FA) were studied. For this purpose, different mixes were prepared by replacing Ordinary Portland Cement (OPC) with 5%, 10%, 15% and 20% of rice husk ash (RHA) and the percentage of addition of fly ash (FA) is fixed as 15% for all these mixes. It was observed that the specimen incorporating 10% of rice husk ash (RHA) and 15% of fly ash (FA) as ternary blend exhibits better mechanical properties such as: Compressive, split tensile and flexural strengths at 28 days of age as compared to traditional mix of SCC without RHA (Rice Husk Ash) and FA (Fly Ash). This research demonstrates that the ideal percentage for a mixture of rice husk ash (RHA) and fly ash as ternary blend is 10% and 15% respectively.


Sign in / Sign up

Export Citation Format

Share Document