scholarly journals Effect of Water Deficit Stress on Yield Performances in Wet Seeded Rice

2018 ◽  
Vol 21 (1) ◽  
pp. 1-12
Author(s):  
S Parveen ◽  
E Humphreys ◽  
M Ahmed

Worldwide fresh water scarcity and labour unavailability in agriculture are driving researchers and farmers to find management strategies that will increase water productivity and reduce labour requirement. Wet seeding instead of transplanting rice greatly reduces the labour requirement for crop establishment, while use of alternate wetting and drying (AWD) instead of continuous flooding reduces irrigation input. However, the safe threshold for irrigating wet seeded rice (WSR) at different crop stages has not been investigated. Therefore, experiment was conducted to determine the effects of different degrees of water stress during different crop growth stages on yield performance of WSR. This was done in greenhouse experiment in the 2011 wet season 2011 at the International Rice Research Institute, Los Baños, Philippines. In the experiment, water stresses were applied by withholding irrigation until soil water tension increased to 10, 20 or 40 kPa (kilo pascal) at 10 cm below the soil surface. Soil water tension was measured using 30 cm long guage tensiometer installed with the center of the ceramic cup. The stresses were applied during three crop stages: 3-leaf (3L) to panicle initiation (PI), PI to flowering (FL), and FL to physiological maturity (PM). The experiment also included a continuously flooded (CF) treatment. The number of drying events ranged from 8-12 during 3L-PI, 6-10 during PI-FL and 6-10 during FL-PM. There was a consistent trend for a decline in the number of irrigations and irrigation input with increasing irrigation threshold, and thresholds of 20 and 40 kPa resulted in significantly lower input than with CF. There were consistent trends for lower grain yield as the level of water deficit stress increased, and imposition of stresses of 20 and 40 kPa at any or all three stages significantly reduced grain yield compared with CF. There was a trend for the reduction in grain yield to be greater when the stresses were imposed at all three stages compared with a single stage, but the differences were not significant. There was a consistent trend for irrigation water productivity (WPi) to decrease as the irrigation threshold increased, with significantly lower values for a 40 kPa threshold at any stage, in comparison with CF. This was because the decline in water input to the pots was less than the decline in yield as the threshold increased. The results suggest that the optimum threshold for irrigation of WSR is 10 kPa during the vegetative and grain filling stages, and that the soil should be kept at close to saturation during PI-FLBangladesh Rice j. 2017, 21(1): 1-12

2019 ◽  
Vol 22 (1) ◽  
pp. 73-81
Author(s):  
S Parveen ◽  
E Humphreys ◽  
M Ahmed

Decreasing availability and increasing costs of water and labour are driving researchers and farmers to find management strategies that increase input water productivity and reduce labour requirement in rice production. Wet seeding instead of transplanting greatly reduces the labour requirement for crop establishment, whereas use of alternate wetting and drying (AWD) instead of continuous flooding reduces irrigation input. However, the safe threshold for irrigating wet seeded rice (WSR), and how this varies with growth stage, has not been established. Therefore, a greenhouse experiment was conducted to determine the effects of different degrees of irrigation threshold during different crop growth stages on crop performance of WSR. This was done in greenhouse experiment in the 2011 wet season at the International Rice Research Institute, Los Baños, Philippines. In the experiments, water stresses were applied by withholding irrigation until soil water tension increased to 10, 20 or 40 kPa at 10 cm below the soil surface. Soil water tension was measured using 30 cm long gauge tensiometer installed with the center of the ceramic cup. The stresses were applied during three crop stages: 3-leaf (3L) to panicle initiation (PI), PI to flowering (FL), and FL to physiological maturity (PM). The experiment was also included a continuously flooded (CF) treatment. Stress during 3L to PI increased the time to PI (by 2 to 4 days) but reduced the duration of grain filling by 3 to 5 days, the larger values with 20 and 40 kPa thresholds. There was no effect of stress thresholds of 10 to 40 kPa during PI-FL on crop duration. Stress during grain filling reduced the duration of grain filling by 6 days for all thresholds. Stresses of 20 and 40 kPa during 3L to PI reduced green leaf and tiller density at PI, but this effect disappeared with the imposition of CF after PI. There were consistent trends for lower final biomass as the level of water deficit stress increased, and imposition of stresses of 20 and 40 kPa at any or all three stages significantly reduced biomass compared with CF. These results suggest that, for shortening the ripening period, water stress may be imposed as 10 to 20 kPa during FL to PM. Bangladesh Rice j. 2018, 22(1): 73-81


Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 5
Author(s):  
Misheck Musokwa ◽  
Paramu Mafongoya

Frequent droughts have threatened the crop yields and livelihoods of many smallholder farmers in South Africa. Pigeonpea can be grown by farmers to mitigate the impacts of droughts caused by climate change. An experiment was conducted at Fountainhill Farm from January 2016 to December 2017. The trial examined grain yield in addition to water use efficiency (WUE) of pigeonpea intercropped with maize versus sole pigeonpea and maize. A randomized complete block design, replicated three times, was used. Soil water tension was measured at 20, 50, and 120 cm within plots. The highest and lowest soil water tension was recorded at 20 m and 120 m respectively. Combined biomass and grain yield were significantly different: pigeonpea + maize (5513 kg ha−1) > pigeonpea (3368 kg ha−1) > maize (2425 kg ha−1). A similar trend was observed for WUE and land equivalent ratio (LER), where pigeonpea + maize outperformed all sole cropping systems. The inclusion of pigeonpea in a traditional mono-cropping system is recommended for smallholder farmers due to greater WUE, LER and other associated benefits such as food, feed and soil fertility amelioration, and it can reduce the effects of droughts induced by climate change.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 498a-498
Author(s):  
Matthew W. Fidelibus ◽  
Chris A. Martin

Sugar and starch concentrations in leaves and roots of Citrus volkameriana Tan and Pasq were measured in response to irrigation frequency and AMF inoculum. Non-mycorrhizal seedlings were treated with a soil inoculum from one of five different communities of AMF; two AMF communities from Arizona citrus orchard soils, and three communities from undisturbed desert soils. Plants were assigned to frequent (soil water tension > –0.01 MPa) or infrequent (soil water tension > –0.06 MPa) irrigation cycles and were container-grown in a glasshouse for 4 months before tissues were analyzed. Fungal inoculum source did not affect shoot or root carbohydrate levels. Plants grown under high irrigation frequency had increased leaf and root starch levels and increased root sugar levels compared with those under low irrigation frequencies. High irrigation frequency also increased shoot mass.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. A. Gomaa ◽  
Essam E. Kandil ◽  
Atef A. M. Zen El-Dein ◽  
Mamdouh E. M. Abou-Donia ◽  
Hayssam M. Ali ◽  
...  

AbstractIn Egypt, water shortage has become a key limiting factor for agriculture. Water-deficit stress causes different morphological, physiological, and biochemical impacts on plants. Two field experiments were carried out at Etay El-Baroud Station, El-Beheira Governorate, Agriculture Research Center (ARC), Egypt, to evaluate the effect of potassium silicate (K-silicate) of maize productivity and water use efficiency (WUE). A split-plot system in the four replications was used under three irrigation intervals during the 2017 and 2018 seasons. Whereas 10, 15, and 20 days irrigation intervals were allocated in main plots, while the three foliar application treatments of K-silicate (one spray at 40 days after sowing; two sprays at 40 and 60 days; and three sprays at 40, 60, and 80 days, and a control (water spray) were distributed in the subplots. All the treatments were distributed in 4 replicates. The results indicated that irrigation every 15 days gave the highest yield in both components and quality. The highly significant of (WUE) under irrigation every 20 days. Foliar spraying of K-silicate three times resulted in the highest yield. Even under water-deficit stress, irrigation every fifteen days combined with foliar application of K-silicate three times achieved the highest values of grain yield and its components. These results show that K-silicate treatment can increase WUE and produce high grain yield requiring less irrigation.


1990 ◽  
Vol 115 (5) ◽  
pp. 712-714 ◽  
Author(s):  
Doyle A. Smittle ◽  
Melvin R. Hall ◽  
James R. Stansell

Sweetpotatoes [Ipomoea batatas (L.) Lam cv. Georgia Jet] were grown on two soil types in drainage lysimeters under controlled soil water regimes during 1982 and 1983. Water regimes consisted of irrigating the sweetpotatoes throughout growth when soil water tension at 23 cm exceeded 25, 50, or 100 kPa or by allowing a 100-kPa water stress before root enlargement, during early root enlargement, or throughout root enlargement. Water use and marketable yields were greater when sweetpotatoes were grown on a Tifton loamy sand (fine loamy, siliceous, thermic, Plinthitic Paleudult) than when grown on a Bonifay sand (loamy, siliceous, thermic, Grossarenic, Plinthitic Paleudult). Water use, marketable yield, and yield of U.S. #1 grade roots generally decreased when soil water tensions exceeded 25 kPa before irrigation, although soil water stress of 100 kPa during storage root development did not significantly affect yield. Regression equations are provided to describe the relationships of water use to plant age and to compute daily evapotranspiration: pan evaporation ratios (crop factors) for sweetpotatoes irrigated at 25, 50, and 100 kPa of soil water tension.


Nativa ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 415
Author(s):  
Morgana Scaramussa Gonçalves ◽  
Wilian Rodrigues Ribeiro ◽  
Edvaldo Fialho Dos Reis ◽  
Antônio Carlos Cóser

A irrigação é usada para conter os efeitos da sazonalidade de produção garantindo maior intensificação dos sistemas de produção a pasto, assim, contribuindo para o aumento da produção e do valor bromatológico das gramíneas. Dessa forma, objetivou-se com esse trabalho avaliar o valor bromatológico de gramíneas tropicais cultivadas em condições de ambiente protegido, submetidas a diferentes tensões de água no solo. Foram realizados três experimentos com as gramíneas Mombaça, Marandu e Tifton 85, onde cada qual, foi conduzida em um esquema de parcelas subdivididas, tendo nas parcelas os níveis do fator tensão de água no solo (20, 40, 50, 60 e 70 kPa) e nas subparcelas níveis 1º, 2º e 3º do fator corte, em um delineamento inteiramente casualizado com cinco repetições. Nas tensões de água no solo de 20 (Mombaça) e 50 kPa (Marandu e Tifton 85) as gramíneas expressaram seu máximo de valor nutritivo. Os maiores teores de PB foram obtidos nas gramíneas Mombaça e Tifton 85. Para as variáveis FDN e FDA o fator tensão de água no solo não foi significativo.Palavras-chave: proteína bruta, fibra, irrigação, forrageiras. BROMATOLOGY OF TROPICAL GRASSES UNDER DIFFERENT SOIL WATER TENSIONS IN PROTECTED ENVIRONMENT ABSTRACT:The irrigation is used to contain the effects of seasonality of production, ensuring a greater intensification of pasture production systems, thus contributing to the increase of production and the bromatological value of grasses. Thus, the objective of this work was to evaluate the nutritive value of tropical grasses grown under protected environment conditions, subject to different soil water stresses. Three experiments, using Mombasa, Marandu and Tifton 85 grasses under a protected environment were carried out and each one was conducted in a subdivided plots scheme, with the levels of soil water tension factor (20, 40, 50, 60 and 70 kPa) and in the subplots levels 1, 2 and 3 of the cut factor, in a completely randomized design with five replicationss. At soil water stresses of 20 (Mombasa) and 50 kPa (Marandu and Tifton 85) the grasses expressed their maximum nutritive value. The highest CP levels were obtained in the Mombasa and Tifton 85 grasses. For the NDF and ADF variables, the soil water stress factor was not significant.Keywords: crude protein, fiber, irrigation, forages.


Author(s):  
A. Wahab ◽  
H. Talleyrand ◽  
M. A. Lugo-López

Grain and stover yields of RS 671 grain sorghum were measured at Barranquitas in an Oxisol and at Corozal in an Ultisol. Measurements were made of weather factors, soil moisture content and tension, plant growth, water deficits and rooting depths. At each site a plot was irrigated as often as necessary to maintain a soil water tension of less than 1 bar. Nonirrigated plots at Corozal were watered whenever necessary to prevent plants from wilting permanently. During a prolonged drought and at grain filling, sorghum extracted water in the Oxisol to a depth of 120 cm. Plants became water stressed after the soil water tension at a depth of 90 cm reached 15 bars. In the Ultisol, sorghum plants were unable to effectively extract available soil moisture at depths below 45 cm. Both plant growth and grain yield were greater in the Oxisol than in the Ultisol. The relative soil compaction of the Ultisol was greater than that of the Oxisol.


Sign in / Sign up

Export Citation Format

Share Document