scholarly journals Plants and Plant Constituents with Analgesic and Anti-inflammatory Activities: A Systematic Review

2020 ◽  
Vol 19 (2) ◽  
pp. 207-224
Author(s):  
Susmita Roy Lisa ◽  
Mohammad Kaisarul Islam ◽  
Nazmul Qais

Medicinal plants with potential therapeutic activities are a tremendous resources of prospective drug candidates. NSAIDs, opiates, and other anti-inflammatory & analgesic agents exhibit several unwanted side-effects. Thus, the development of new active compounds with minimum adverse effects necessitates an emergence. This study aims to provide a comprehensive summary of plant species and reported phytoconstituents with analgesic and inti-inflammatory activities. Eighty-seven species from fifty-two plant families with reported constituents and activities have been included in this review. In-depth research in the area of screening novel analgesic and antiinflammatory agents from natural sources followed by the investigation of their pharmacological properties and clinical applications may lead to the generation of new active agents with better therapeutic activity and selectivity in the future. Dhaka Univ. J. Pharm. Sci. 19(2): 207-224, 2020 (December)

2014 ◽  
Vol 2 (2) ◽  
pp. 11
Author(s):  
E. F. Pacheco Filho ◽  
F. M. B. Magalhães ◽  
A. V. Machado ◽  
R. O. Costa

<p>A apitoxina é o veneno utilizado pelas abelhas do gênero Apis para sua proteção e defesa contra inúmeros inimigos naturais. Sua composição é complexa e consiste em uma mistura de enzimas (Fosfalipase A2 e Hialorunidase) peptídeos (Melitina, Apamina e Peptídeo MCD), aminas (Histamina, Dopamina e Noradrenalina) carboidratos e lipídios, uma vez inoculada a apitoxina desencadeará uma série de reações biológicas na membrana, que variam de acordo com a diversidade bioquímica de seus constituintes. No cenário atual, a produção de apitoxina constitui uma atividade diferenciada dentro da apicultura, com grande potencial para o mercado farmacêutico, pela capacidade de se produzir inúmeros fármacos. Neste trabalho, daremos atenção especial à produção e coleta da apitoxina,abordando a sua composição química, propriedades farmacológicas e suas atividades terapêuticas, focadas na sua ação anti-inflamatória e anti-nociceptiva.</p><p><strong> </strong><strong>Apitoxin and its Anti-inflammatory activity and anti-nociceptive</strong></p><pre> </pre><p>The bee venom is the poison used by bees of the genus Apis for their protection and defense against numerous natural enemies. Its composition is complex and consists of a mixture of enzymes (Fosfalipase A2 and Hialorunidase) peptides (Melittin, Apamin, and Peptide MCD), amines (histamine, dopamine, and noradrenaline) carbohydrates and lipids once inoculated apitoxin to trigger a series of biological reactions on the membrane, which vary according to the biochemical diversity of its constituents. In the present scenario, the bee venom production is a different activity within the beekeeping, with great potential for the pharmaceutical market, the ability to produce numerous drugs. In this paper, we focus on the production and collection of bee venom by addressing its chemical composition, its pharmacological properties and therapeutic activities, focused on its anti-inflammatory action and anti-nociceptive.</p><p><strong> </strong></p>


2021 ◽  
Vol 11 ◽  
Author(s):  
Hayate Javed ◽  
Mohamed Fizur Nagoor Meeran ◽  
Niraj Kumar Jha ◽  
Shreesh Ojha

The recent outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) started in December 2019, resulting in the coronavirus disease-19 (COVID-19) pandemic. Coronaviruses are solely accountable for rising mortality and socioeconomic saddles. Presently, there are few repurposed drugs such as remdesivir or favipiravir approved for the treatment of COVID-19, although vaccines and plasma therapy is also subject to emergency approval. However, some potential natural treatments and cures have also been proposed. Molecules of natural origin showed therapeutic importance such as antiviral, anti-inflammatory, and antioxidant activity, and could be useful drug candidates for treating COVID-19. In recent years, essential oils have shown promising therapeutic effects against many viral diseases. Carvacrol is one of the monoterpene phenol with abundant presence in essential oils of many aromatic plants, including thyme and oregano. It is being used as food flavoring, additive, and preservatives. Carvacrol is also used as a fragrance in cosmetic products. A number of research studies have shown biological actions of carvacrol with its therapeutic potential is of clinical significance. The in vitro and in vivo studies have shown multiple pharmacological properties such as anticancer, anti-fungal, anti-bacterial, anti-oxidant, anti-inflammatory, vasorelaxant, hepatoprotective, and spasmolytic. This review highlights the various biological and pharmacological properties of carvacrol within the scope of COVID-19.


BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 4667-4670
Author(s):  
Michal Jablonský ◽  
František Kreps ◽  
Aleš Ház ◽  
Jozef Šima ◽  
Jozef Jablonský

Acquisition and isolation of value-added substances from natural sources using new types of green solvents are becoming a breakthrough area of 21st century research. In combination with various extraction techniques, there is expected to be a diversification of the use of these solvents for extraction, separation, and the formation of new drug carriers, allowing increased solubility of substances having potential pharmacological properties. Extraction, separation, or increase in the solubility of suitable drug candidates against COVID-19, or other viral diseases, opens new ways to effectively prevent and protect human health in this pandemic period.


2019 ◽  
Author(s):  
Chem Int

Coumarin and its derivatives are widely spread in nature. Coumarin goes to agroup as benzopyrones, which consists of a benzene ring connected to a pyronemoiety. Coumarins displayed a broad range of pharmacologically useful profile.Coumarins are considered as a promising group of bioactive compounds thatexhibited a wide range of biological activities like anti-microbial, anti-viral,antiparasitic, anti-helmintic, analgesic, anti-inflammatory, anti-diabetic, anticancer,anti-oxidant, anti-proliferative, anti-convulsant, and antihypertensiveactivities etc. The coumarin compounds have immense interest due to theirdiverse pharmacological properties. In particular, these biological activities makecoumarin compounds more attractive and testing as novel therapeuticcompounds.


2020 ◽  
Vol 24 (5) ◽  
pp. 473-486 ◽  
Author(s):  
Ligia S. da Silveira Pinto ◽  
Thatyana R. Alves Vasconcelos ◽  
Claudia Regina B. Gomes ◽  
Marcus Vinícius N. de Souza

Azetidin-2-ones (&#946;-lactams) and its derivatives are an important group of heterocyclic compounds that exhibit a wide range of pharmacological properties such as antibacterial, anticancer, anti-diabetic, anti-inflammatory and anticonvulsant. Efforts have been made over the years to develop novel congeners with superior biological activities and minimal potential for undesirable side effects. The present review aimed to highlight some recent discoveries (2013-2019) on the development of novel azetidin-2-one-based compounds as potential anticancer agents.


Author(s):  
Cosmas Chinweike Eze ◽  
Mercy Amarachukwu Ezeokonkwo ◽  
Benjamin Ebere Ezema ◽  
Abraham Efeturi Onoabedje ◽  
David Izuchukwu Ugwu

: Coumarin, sulphonamide and amide scaffolds exhibit diverse pharmacological features and constitute an important class of therapeutic agents. In this review, we have discussed the synthesis, biological properties, and SAR of coumarins containing sulphonamide or amide group in the last seven years. Many reviews on the therapeutic activities of coumarins, sulphonamides, and amides have been published, hence the authors focused on coumarin-linked sulphonamide or amide scaffolds. The review provides information on the synthetic route to new coumarins containing sulphonamide or amide groups with improved pharmacological properties.


2015 ◽  
Vol 15 (5) ◽  
pp. 458-483 ◽  
Author(s):  
Fabiana Moura ◽  
Kivia de Andrade ◽  
Juliana Farias dos Santos ◽  
Marilia Fonseca Goulart

2019 ◽  
Vol 16 (10) ◽  
pp. 1157-1166
Author(s):  
Rodrigo César da Silva ◽  
Fabiano Veiga ◽  
Fabiana Cardoso Vilela ◽  
André Victor Pereira ◽  
Thayssa Tavares da Silva Cunha ◽  
...  

Background: : A new series of O-benzyloximes derived from eugenol was synthesized and was evaluated for its antinociceptive and anti-inflammatory properties. Methods: : The target compounds were obtained in good global 25-28% yields over 6 steps, which led us to identify compounds (Z)-5,6-dimethoxy-2,2-dimethyl-2,3-dihydro-1H-inden-1-one-O-(4- (methylthio)benzyloxime (8b), (Z)-5,6-dimethoxy-2,2-dimethyl-2,3-dihydro-1H-inden-1-one-O-4- bromobenzyloxime (8d) and (Z)-5,6-dimethoxy-2,2-dimethyl-2,3-dihydro-1H-inden-1-one-O-4- (methylsulfonyl)benzyloxime (8f) as promising bioactive prototypes. Results:: These compounds have significant analgesic and anti-inflammatory effects, as evidenced by formalin-induced mice paw edema and carrageenan-induced mice paw edema tests. In the formalin test, compounds 8b and 8f evidenced both anti-inflammatory and direct analgesic activities and in the carrageenan-induced paw edema, with compounds 8c, 8d, and 8f showing the best inhibitory effects, exceeding the standard drugs indomethacin and celecoxib. Conclusion: : Molecular docking studies have provided additional evidence that the pharmacological profile of these compounds may be related to inhibition of COX enzymes, with slight preference for COX-1. These results led us to identify the new O-benzyloxime ethers 8b, 8d and 8f as orally bioactive prototypes, with a novel structural pattern capable of being explored in further studies aiming at their optimization and development as drug candidates.


2020 ◽  
Vol 16 (2) ◽  
pp. 190-195 ◽  
Author(s):  
Süleyman Ediz ◽  
Murat Cancan

Background: Reckoning molecular topological indices of drug structures gives the data about the underlying topology of these drug structures. Novel anticancer drugs have been leading by researchers to produce ideal drugs. Materials and Methods: Pharmacological properties of these new drug agents explored by utilizing simulation strategies. Topological indices additionally have been utilized to research pharmacological properties of some drug structures. Novel alkylating agents based anticancer drug candidates and ve-degree molecular topological indices have been introduced recently. Results and Conclusion: In this study we calculate ve-degree atom-bond connectivity, harmonic, geometric-arithmetic and sum-connectivity molecular topological indices for the newly defined alkylating agents based dual-target anticancer drug candidates.


2019 ◽  
Vol 14 (2) ◽  
pp. 133-143 ◽  
Author(s):  
Hidayat Hussain ◽  
Ivan R. Green ◽  
Muhammad Saleem ◽  
Khanzadi F. Khattak ◽  
Muhammad Irshad ◽  
...  

Background: Cucurbitacins belong to a group of tetracyclic triterpenoids that display a wide range of biological effects. In the past, numerous cucurbitacins have been isolated from natural sources and many active compounds have been synthesized using the privileged scaffold in order to enhance its cytotoxic effects. Objective: his review covers patents on the therapeutic effects of natural cucurbitacins and their synthetic analogs published during the past decade. By far, the majority of patents published are related to cancer and Structure-Activity Relationships (SAR) of these compounds are included to lend gravitas to this important class of natural products. Methods: The date about the published patents was downloaded via online open access patent databases. Results: Cucurbitacins display significant cytotoxic properties, in particular cucurbitacins B and D which possess very potent effects towards a number of cancer cells. Numerous cucurbitacins isolated from natural sources have been derivatized through chemical modification at the C(2)-OH and C(25)- OH groups. Most importantly, an acyl ester of the C(25)-OH and, iso-propyl, n-propyl and ethyl ether groups of the C(2)-OH demonstrated the most increased cytotoxic activity. Conclusion: The significant cytotoxic effects of natural and semi-synthetic cucurbitacins make them attractive as new drug candidates. Moreover, cucurbitacins have the capability to form conjugates with other anticancer drugs which will synergistically enhance their anticancer effects. The authors believe that in order to get lead compounds, there should be a greater focus on the synthesis of homodimers, heterodimers, and halo derivatives of cucurbitacins. In the opinion of the authors the analysis of the published patents on the cucurbitacins indicates that these compounds can be developed into a regimen to treat a wide spectrum of cancers.


Sign in / Sign up

Export Citation Format

Share Document