An Assessment of in vitro Antioxidant Potential of Camelina sativa L. Seed Oil and Estimation of Tocopherol Content using HPTLC Method

2021 ◽  
Vol 13 (2) ◽  
pp. 589-600
Author(s):  
R. Pathak ◽  
M. Mohsin ◽  
S. P. S Mehta

The present study was aimed to analyze the physicochemical properties of Camelina sativa L. seed oil in order to identify its utilization as a primary feedstock for biofuel production. Efforts were also made to identify and quantify the amount of α- tocopherols in Camelina seed oil and evaluated in vitro antioxidant potential of Camelina sativa seed oil and were compared with α–tocopherol standard. Physicochemical properties such as oil yield content (36.66 %), less acid value (5.39 mg KOH/g) make it a prominent feedstock for biodiesel production.  Saponification value (182.66 mg KOH/g) also makes this oil useful in soap and cosmetic industries. To check in vitro antioxidant potential of Camelina seed oil H2O2, DPPH and ABTS were used as free radical inducers. Oil showed remarkable inhibition potential of trapping these free radicals. Tocopherol content was analyzed through HPTLC. Camelina sativa seed oil was found to contain 59.34 mg/100 g of tocopherol content. It is evident from this study that Camelina oil has high antioxidant potential and there is no need to add other antioxidant substances in the products formed by using Camelina sativa seed oil.

2019 ◽  
Author(s):  
Chem Int

Oil extracted from Persea Americana seed was assayed for its physiochemical properties and antioxidant potential using various standard methods. The oil content of the seed was found to be < 10%. Brownish-red color oil was liquid at room temperature, with specific gravity of 0.91±0.02 g/mL. Other physiochemical parameters determined were; acid value (4.51±0.08 mgKOH/g), %FFA (2.26±0.08), peroxide value (2.40±0.57 mgO2/Kg), ester value (31.26±0.03 mgKOH/g), saponification value (35.76±0.07 mgKOH/g) and iodine value (23.5±0.07). The results of the antioxidant activities of the seed oil showed that the flavonoid content (80.00±1.41 mgQE/g) was ~10 folds higher than the phenolic content (8.27±0.06 mgGAE/g). The DPPH radical scavenging value was found to be 51.54±0.25% with an IC50 value of 4.68±0.02 mg/mL and reducing power with an average absorbance of 0.85±0.01 and an IC50 value of 0.001±0.02 mg/mL. Gallic acid showed better antioxidant activities than the oil studied. The results obtained in this study showed that Persea Americana seed oil has nutritional, industrial as well as medicinal potentials.


2019 ◽  
Author(s):  
Chem Int

Biodiesel produced by transesterification process from vegetable oils or animal fats is viewed as a promising renewable energy source. Now a day’s diminishing of petroleum reserves in the ground and increasing environmental pollution prevention and regulations have made searching for renewable oxygenated energy sources from biomasses. Biodiesel is non-toxic, renewable, biodegradable, environmentally benign, energy efficient and diesel substituent fuel used in diesel engine which contributes minimal amount of global warming gases such as CO, CO2, SO2, NOX, unburned hydrocarbons, and particulate matters. The chemical composition of the biodiesel was examined by help of GC-MS and five fatty acid methyl esters such as methyl palmitate, methyl stearate, methyl oleate, methyl linoleate and methyl linoleneate were identified. The variables that affect the amount of biodiesel such as methanol/oil molar ratio, mass weight of catalyst and temperature were studied. In addition to this the physicochemical properties of the biodiesel such as (density, kinematic viscosity, iodine value high heating value, flash point, acidic value, saponification value, carbon residue, peroxide value and ester content) were determined and its corresponding values were 87 Kg/m3, 5.63 Mm2/s, 39.56 g I/100g oil, 42.22 MJ/Kg, 132oC, 0.12 mgKOH/g, 209.72 mgKOH/g, 0.04%wt, 12.63 meq/kg, and 92.67 wt% respectively. The results of the present study showed that all physicochemical properties lie within the ASTM and EN biodiesel standards. Therefore, mango seed oil methyl ester could be used as an alternative to diesel engine.


Biomolecules ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 616
Author(s):  
Bakari Hamadou ◽  
Djomdi ◽  
Ruben Zieba Falama ◽  
Cedric Delattre ◽  
Guillaume Pierre ◽  
...  

The aim of this work is to study the influence of the physicochemical characteristics of neem seeds, according to their mass and oil content, on the production of biodiesel. After the physical characterization of the seeds and extraction of the oil (triglycerides), biodiesel was produced from crude neem seed oil by transesterification with ethanol in the presence of sodium hydroxide. This study shows that the physicochemical characteristics of these seeds vary according to the origin of the samples. The seeds from Zidim, with a mass average of 200 seeds evaluated at 141.36 g and an almond content of 40.70%, have better characteristics compared to those collected in the city of Maroua, with average values evaluated at 128.00 g and 36.05%, respectively. Almonds have an average lipid content of 53.98 and 56.75% for the Maroua and Zidim samples, respectively. This study also reveals that neem oil, by its physicochemical characteristics, has a satisfactory quality for a valorization in the production of biodiesel. However, its relatively high free fatty acid content is a major drawback, which leads to a low yield of biodiesel, evaluated on average at 89.02%, and requires a desacidification operation to improve this yield. The analysis of biodiesel indicates physicochemical characteristics close and comparable to those of petrodiesel, particularly in terms of calorific value, density, kinematic viscosity, acid value, evaluated at 41.00 MJ/kg, 0.803, 4.42 cSt, and 0.130 mg/g, respectively.


2020 ◽  
Vol 13 (1) ◽  
pp. 38
Author(s):  
Rakshit Pathak ◽  
Anjali Kumari ◽  
Mohammed Mohsin ◽  
Ganga Bisht ◽  
Madhu Bala

2020 ◽  
Vol 8 (3) ◽  
pp. 87-94
Author(s):  
Ganesh Lamichhane ◽  
Sujan Khadka ◽  
Sanjib Adhikari ◽  
Niranjan Koirala ◽  
Dhruba Prasad Poudyal

Haphazard mining and consumption of fossil fuels have reduced petroleum reserves causing fossil fuel depletion and environmental degradation; thus, reflecting the need of the cheaper, renewable and eco-friendly alternative source of petroleum to meet the fuel demand. Million liters of edible oil used for cooking foods and date expired oils from oil manufacturers are discarded into sewage. This study primarily intends to study the feasibility of biodiesel production using such waste oils. In this work, biodiesel was prepared from waste cooking oils by a process called transesterification with NaOH as a catalyst. Our results showed that methyl ester (biodiesel) (92.67±0.90%), soap materials (1.33±0.224%) and glycerol (6±0.68%) were obtained after the transesterification of waste cooking oil. The physicochemical properties of biodiesel such as density, viscosity, volatility, surface tension and flashpoint were analyzed, which were found to be 0.862±0.006 g/cm3, 2.23±0.021 cP, 0.327×10-3±4.5×10-6 g/s, 32.03±0.138 dyne/cm, 169.67±0.810°C, respectively. These properties were compared with that of commercial diesel as well as with the values specified by the American Society for Testing and Materials (ASTM) D6751. The density and the surface tension of the biodiesel were found similar to that of petrodiesel but its volatility was 3 times lower. Fourier-transform infrared spectroscopy (FTIR) spectra of the biodiesel showed methyl ester functional group at 1436 cm-1. Based on the cost of the materials used for production, the cost of biodiesel was estimated to be about 81 Nepalese rupees (0.67 USD) per liter. The properties of biodiesel also met the standard values of ASTM D6751. These findings indicate that waste oil is one of the feasible biodiesel sources and it can be used as a suitable alternative to petrodiesel.


2021 ◽  
Vol 13 (3) ◽  
pp. 820-829
Author(s):  
Meenakshi Garg ◽  
Surabhi Wason ◽  
Prem Lata Meena ◽  
Rajni Chopra ◽  
Susmita Dey Sadhu ◽  
...  

Most common cooking oil, such as soybean oil, can not be used for high-temperature applications, as they are highly susceptible to oxidation. Sesame seed oil rich in natural antioxidants provides high oxidative stability. Therefore, blending sesame oil with soybean oil offer improved oxidative stability. This study aims to determine the effect of frying on the physicochemical properties of sesame and soyabean oil blend. Soybean oil (SO) was blended with sesame seed oil (SSO) in the ratio of A-40:60, B-60:40 and C-50:50 so as to enhance its market acceptability. The changes occurring in soybean and sesame seed oil blend during repeated frying cycles were monitored. The parameters assessed were: Refractive index, specific gravity, viscosity, saponification value, free fatty acid (FFA) , peroxide value, and acid value. Fresh and fried oil blends were also characterised by Fourier Transform Infrared Spectroscopy (FTIR). No significant changes were observed for refractive index and specific gravity values in oil blends. Viscosity of blend B blend was the least, making it desirable for cooking purposes. However, FFA, acid value and peroxide value increased after each frying cycle. The increment of FFA and AV was found low for blend A (10% and 10%,) than blend B (27%,13%) and blend C (13%,13%). The peroxide value of all samples was within the acceptable range. The results of the present study definitely indicated that blending sesame oil with soybean oil could produce an oil blend which is economically feasible and provide desirable physicochemical properties for cooking purposes.


Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1262
Author(s):  
Tanja Cvetković ◽  
Jasmina Ranilović ◽  
Davorka Gajari ◽  
Helena Tomić-Obrdalj ◽  
Drago Šubarić ◽  
...  

The aim of this study was to evaluate Croatian pepper seed varieties (Podravka and Slavonka) as a new source of added value ingredients. Pepper seed is mostly considered a by-product. For the first time, the pepper (Capsicum annuum L.) seeds of the Slavonka and Podravka varieties were examined as the source material for oil production by the two methods of extraction: cold pressing (CP) and supercritical CO2 extraction (SC-CO2). Further, fatty acid profile, tocopherols, and sensory analysis of the oils were examined, as well as the chemical characteristics and antioxidant potential of seed flour. The antioxidant potential of pepper seed flour was different between varieties (Podravka 107 antioxidant unit (AU); Slavonka 70 antioxidant unit (AU)). The Podravka variety pepper seed oil has shown higher γ-tocopherol content (CP 80.1 mg/100 g; SC-CO2 extraction 65.3 mg/100 g) than the Slavonka variety (CP 65.3 mg/100 g; SC-CO2 extraction 16.0 mg/100 g). According to the obtained results, cold pressing (CP) would be a more favourable method for pepper seed oil extraction, taking into account sensory evaluation and nutritional quality. The pepper seed oil has potential for culinary application with a nutritional quality comparable to vegetable oils of a higher price class.


Author(s):  
Yadessa Gonfa Keneni ◽  
Legesse Adane Bahiru ◽  
Jorge Mario Marchetti

Abstract The present study focuses on the determination of oil contents of thirteen different jatropha seed collections from Ethiopia. The oil was extracted with a Soxhlet extractor using n-hexane which was selected out of four different solvents: diethyl ether, ethanol, n-heptane, and n-hexane. Cotton and thimble were used as filter for the extractions. Some properties of the oil of Chali seed collection and a sample of mixed oils (a mixture of equal volume of oils from thirteen different seed collections) were determined. The energy contents of selected de-oiled jatropha seed residues were also estimated. In the extraction with cotton and thimble, the largest percentage of oil yield was obtained from Dana seed (48.29%) and Chali seed (45.79) collections, respectively. The acid value (1.32 mg KOH/g) and percentage of free fatty acids (%FFA) (0.66%) of Chali seed oil were lower than the acid value (2.12 mg KOH/g) and %FFA (1.06%) of the mixed oil, and thus, the former oil is more suitable for alkaline-catalyzed biodiesel production. The iodine values of both Chali seed oil (116.02 g/100 g) and mixed oil (109.24 g/100 g) did not exceed the maximum standard for biodiesel according to the European EN 14214 specification, and the oils could be used for biodiesel production. The gross calorific values of de-oiled jatropha seed residues after oil extraction were found to range from 18.57 to 24.03 MJ/kg, and with the average value of 19.64 MJ/kg. Thus, the de-oiled seed residues can be used as the source of heat.


Sign in / Sign up

Export Citation Format

Share Document