scholarly journals PREPARASI DAN KARAKTERISASI MIKROKRISTALIN SELULOSA (MCC) BERBAHAN BAKU TANDAN KOSONG KELAPA SAWIT (TKKS)

Alotrop ◽  
2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Fepri Effendi ◽  
Rina Elvia ◽  
Hermansyah Amir

[PREPARATION AND CHARACTERIZATION OF MICROCRYSTALLINE CELLULOSE (MCC) MADE FROM EMPTY PALM OIL BUNCHES (TKKS)] Empty Palm bunches (TKKS) is solid waste from industrial processing of oil palm (Elaeis guineensis Jacq) that have a high cellulose content.  This research aims to synthesize Microcrystalline Cellulose (MCC) from TKKS and determine the characteristics of the MCC produced. The manufacturing process begins with the MCC delignifikasi multistage pulping TKKS using mixed of 3.5% HNO3 and NaNO2 in temperatures of 90 ?C for 2 hours, followed by heating of a mixture of 2% NaOH and Na2SO3 2 % at temperature 50?C for 2 hours. The second stage of the lignification process is done using NaOH 17.5 %, followed by hydrolysis towards ?-Cellulose lignification results with heating in the aqueous solution of HCl at concentrations of 3, 3.5 and 4 M for 30, 45 and 60 minutes. From the results obtained from the hydrolysis of the optimum yield of 80.73 %, i.e., MCC that use concentration of HCl 3 M for 30 minutes.  MCC produced then analyzed using FTIR, XRD, and PSA. FTIR absorption for MCC results showed an of waves number on a 3375.43 cm-1 and 2899,01cm-1, indicating the presence of hydroxyl OH and CH.The results of the analysis with the PSA suggests that MCC has generated a measure of particle diameter 0.5281 µm. Using XRD analysis results that MCC has a degree of crystallinity of 86,79 %. And the results of testing the content of carbohydrates in MCC produced shows levels of carbohydrates of 88.36 %.

2021 ◽  
Vol 6 (2) ◽  
pp. 169-176
Author(s):  
Inda Iliyin ◽  
Henny Purwaningsih ◽  
Tun Tedja Irawadi

During each day of harvest, wasted banana stems are obtained in large quantities. These stems are composed mainly of 74.37% cellulose which is a very important raw material. This study aims to isolate cellulose from banana stems using liquefaction, delignification and bleaching processes with a microwave  at power variations of 450, 600 and 800 W.  The results showed that the highest cellulose content of 86.43% was obtained at 800 W for 14 minutes. Meanwhile, the fourier-transform infrared spectroscopy (FTIR) analysis result did not show a peak at wavenumber 1519 cm-1 which is the specific peak for lignin but showed a peak for cellulose at wavenumber 898 cm-1. Furthermore, XRD analysis of crystallinity showed a typical diffraction peak of cellulose at 22.5o with a degree of crystallinity of 56.8% while, morphological analysis with SEM showed that the sizes of the cellulose fibers produced varied, ranging from 5 to hundreds of micrometers and visible fibrillary fibers


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1527
Author(s):  
Magdalena Woźniak ◽  
Izabela Ratajczak ◽  
Dawid Wojcieszak ◽  
Agnieszka Waśkiewicz ◽  
Kinga Szentner ◽  
...  

In the last decade, an increasingly common method of maize stover management is to use it for energy generation, including anaerobic digestion for biogas production. Therefore, the aim of this study was to provide a chemical and structural characterization of maize stover fractions and, based on these parameters, to evaluate the potential application of these fractions, including forbiogas production. In the study, maize stover fractions, including cobs, husks, leaves and stalks, were used. The biomass samples were characterized by infrared spectroscopy (FTIR), X-ray diffraction and analysis of elemental composition. Among all maize stover fractions, stalks showed the highest C:N ratio, degree of crystallinity and cellulose and lignin contents. The high crystallinity index of stalks (38%) is associated with their high cellulose content (44.87%). FTIR analysis showed that the spectrum of maize stalks is characterized by the highest intensity of bands at 1512 cm−1 and 1384 cm−1, which are the characteristic bands of lignin and cellulose. Obtained results indicate that the maize stover fraction has an influence on the chemical and structural parameters. Moreover, presented results indicate that stalks are characterized by the most favorable chemical parameters for biogas production.


Author(s):  
C. C. Nwajiobi ◽  
J. O. E. Otaigbe ◽  
O. Oriji

Microcrystalline celluloses (MCC) were prepared from α-celluloses obtained from fluted pumpkin stalk and pod. The substrates were subjected to treatment with 2% (w/v) NaOH, 3.5% (w/v) NaOCl and 17.5% (w/v) NaOH solutions respectively to obtain alpha celluloses. Acid hydrolysis of the alpha-celluloses using 2.5 N hydrochloric acid were carried out. The study evaluates and compares the physicochemical properties of microcrystalline cellulose obtained from the pod and stalk of fluted pumpkin. Composition of cellulose, hemicellulose and lignin were also determined. Results showed cellulose; hemicellulose and lignin content of the pod husk and stalk were 49%, 26%, 9% and 41%, 24%, 26%, respectively. The morphology of the hydrolyzed MCCs’ were investigated using scanning electron microscopy (SEM) and the results revealed the stalk (FS-MCC) to have an individual rod-like shaped fiber when compared with flat-shaped large aggregated forms of the pod (FP-MCC). The particles sizes were also uneven with FP-MCC (6.689 µm) having larger particle sizes than FS-MCC (5.538 µm). The high cellulose content of the pod husk shows that the applications may be extended in the production of other cellulose derivatives while the high lignin content of the stalk reveals other alternative source of producing lignin in the making of textile dyes, coating and other agricultural chemical. Pod MCC (FP-MCC) had better physicochemical properties than the stalk MCC (FS-MCC).


2006 ◽  
Vol 309-311 ◽  
pp. 321-324 ◽  
Author(s):  
Gültekin Göller ◽  
Ipek Akin ◽  
Niyazi Eruslu ◽  
E.S. Kayali

The purpose of this study is to investigate the crystallization behavior and in-vitro bioactivity character of glass ceramics having 3:7 weight ratio of flourapatite (Ca5(PO4)3F) to potassium mica (K2Mg3AlSi3O10F2) as a function of titania addition, and compare the morphology of hydroxycarbonateapatite (HCA) layer formation depending on titania addition on ceramic composition. It is observed from microstructural investigations that there is no morphology change occurred on precipitated HCA layer depending on nucleating agent in glass-ceramics. TF-XRD analysis indicates that after precipitation of initial particulates, crystallization proceeds and crystallization of precipitated HCA phase increases by increasing the time. It is observed that Ca, P ion variation in solution has two stage in terms of precipitation’ first stage represents formation of amorphous HCA and the second stage is related with crystallization. FTIR analysis strongly supports TF-XRD analysis as well.


2021 ◽  
Author(s):  
Vishnu Prabha Muthusamy ◽  
Vaideki Krishnakumar

Abstract Hydrolysis of a cellulose biomass results in breaking down the cellulose microfibrils into microcrystalline cellulose (MCC) or nanocrystalline cellulose (NCC) depending on the reaction conditions. Cellulose microfibrils are established robustly due to the synergistic interaction of van der Waals, inter- and intra-molecular hydrogen bonds and glycosidic bond between glucan moieties of cellulose polysaccharide. The hydrogen bonding network plays a crucial role in conforming cellulose chains into crystalline and amorphous region thereby determining its degree of crystallinity. The knowledge of hydrogen bonds in cellulose hence becomes indispensable to understand the crystallinity of cellulose before and after a hydrolysis reaction. However, the nature of hydrogen bonds after hydrolysis and how they contribute to the mechanical properties of resultant MCC/NCC are yet to be realized. This paper is therefore intended to discuss the degree of crystallinity of cellulose particles obtained after hydrolyzing waste cotton fibers (WCF) in two parts: part I, obtaining MCC with maximum total crystallinity index (TCI) by acid hydrolysis of WCF using Box Behnken Design; part II, comparing degree of crystallinity of MCC sample exhibiting highest TCI with that of WCF using analytical tools like X-ray Photoelectron Spectrometer, X-ray Diffractometer and Fourier Transform Infra- Red spectrometer. The physical dimension of MCC particle with maximum TCI has been verified using Field Emission Scanning Electron Microscopic images.


2021 ◽  
Vol 891 ◽  
pp. 77-82
Author(s):  
Sharyjel R. Cayabyab ◽  
Josefina R. Celorico ◽  
Cyron L. Custodio ◽  
Blessie A. Basilia

Utilization of natural biopolymers has shown potential in generating innovations for tissue engineering applications. This study aims to fabricate scaffolds from cellulose acetate derived from kapok fiber. Cellulose is extracted from raw kapok fibers by alkali treatment and delignification then synthesized into cellulose acetate. Kapok cellulose acetate (KCA) is dissolved in dimethyl sulfoxide to fabricate the scaffold. Materials were characterized using Attenuated Total Reflectance – Fourier Transform Infrared (ATR-FTIR) spectrometer, X-ray diffractometer (XRD) and Differential Scanning Calorimeter (DSC). FTIR analysis has shown that cellulose was extracted from kapok and cellulose acetate was successfully synthesized. XRD analysis also confirmed the presence of cellulose acetate. Results have also shown that synthesized KCA seems to have higher crystallinity than commercially available cellulose acetate (CCA). The degree of substitution (DS) of KCA was found to be 2.85 which is close to the DS value of tri-substituted cellulose acetate. DSC analysis has shown lower glass transition temperature of 52.15°C but higher degradation temperature of 300.43°C than the CCA. Moreover, the values for the enthalpy of fusion for two endotherms of KCA (44.0556 J/g and 18.6946 J/g) are higher than the values for CCA by 344% and 261%, respectively; thus, indicating the higher degree of crystallinity for synthesized KCA samples.


2018 ◽  
Vol 10 (2s) ◽  
pp. S87-S92 ◽  
Author(s):  
Herman Suryadi ◽  
Sutriyo Sutriyo S ◽  
Monica Angeline ◽  
Mitayani Wahyu Murti

2021 ◽  
Vol 9 (2) ◽  
pp. 22-25
Author(s):  
Shawbo A. Abubaker ◽  
Faten A. Chaqmaqchee ◽  
Akram H. Taha

In this study, different types of polymers in postconsumer plastics with pure plastics have been studied. Highdensity polyethylene (HDPE1 and HDPE2), polyvinyl chloride (PVC3 and PVC4), polyethylene terephthalate (PET5 and PET6), and polypropylenes (PP7 and PP8) were compared using X-ray diffraction (XRD) and X-ray fluorescence (XRF) techniques. XRF has shown the spectral in K-lines of polymer materials present in plastics waste. The peak intensity and degree of crystallinity of commercial polymers are varied using XRD analysis. The intensity not attributable to the crystalline peaks may be regarded as the amorphous scattering and used as a template in analyzing the diffraction pattern of the samples. The XRD analysis helps to provide characteristic spectral lines whose intensities vary with the type of each constituent polymer. The combined usage of XRD and XRF techniques yielded very useful and effective results for a commercial plastic management.


2015 ◽  
Vol 50 (3) ◽  
pp. 199-204 ◽  
Author(s):  
SM Haque ◽  
AA Chowdhury ◽  
AA Rana ◽  
SM Masum ◽  
T Ferdous ◽  
...  

Microcrystalline cellulose (MCC) is an important ingredient in pharmaceutical, food, cosmetic and other industries. Microcrystalline cellulose was synthesized from the alpha cellulose content of pretreated cotton, Bombax ceiba L. by hydrochloric acid hydrolysis. The prepared microcrystalline cellulose was characterized by determining some physicochemical properties such as pH, angle of response, Carr’s index, Hausner ratio, moisture content etc and compared with commercial-grade microcrystalline cellulose that is used in pharmaceutical industry as excipient. Scanning electron microscope (SEM) and FTIR data represented the structure and particle characterization of sample. Thermal gravimetric analysis (TGA) showed the thermal stability of the sample. The results showed that the yield of microcrystalline cellulose was about 85% and compared favorably with the commercial grade microcrystalline cellulose as well as conformed official specifications for microcrystalline cellulose in British Pharmacopeia. It was also found that the duration of acid hydrolysis affected the polymeric form of the processed alpha cellulose.Bangladesh J. Sci. Ind. Res. 50(3), 199-204, 2015


Sign in / Sign up

Export Citation Format

Share Document