scholarly journals Analisis Kemampuan Akumulasi Polyfosfat pada Tiap Fase Pertumbuhan Isolat Bakteri Toleran Uranium

2020 ◽  
Vol 9 (1) ◽  
pp. 81
Author(s):  
Heni Mutmainnah ◽  
Muhammad Rijal

Polyphosphate is a straight chain biopolymer consisting of tens to hundreds of phosphate residues that are linked by high energy phosphoanhydride bonds, polyphosphate plays an important role in the bioremediation process of uranium waste, especially in the process of uranium metal precipitation in bacterial cells. Some bacteria are known to have the potential to interact with uranium through redox transformation and bioprecipitation by releasing inorganic phosphate to bind uranium in the environment. Inorganic phosphate results from degradation of polyphosphates that accumulate in cells. This study aims to determine the ability of uranium-tolerant bacteria to accumulate polyphosphates during their growth phase. Measurements were made in 5 growth phases, namely the lag phase, the logarithmic phase, the beginning of the stationary phase, the stationary phase, and the stationary end. Quantitative analysis of polyphosphate accumulations was carried out using the Olsen & Dean method. The test results are known that the uranium-tolerant bacterial isolat is able to accumulate the most optimal polyphosphate in the stationary phase, especially at the 48th hour and the lowest polyP accumulation is found in the initial stationary phase at the 24th hour.

2011 ◽  
Vol 78 (1) ◽  
pp. 14-20 ◽  
Author(s):  
Kelly L. Robertson ◽  
Gary J. Vora

ABSTRACTWe describe the development and testing of a high-throughput method that enables the detection of small noncoding RNAs (ncRNAs) from single bacterial cells using locked nucleic acid probes (LNA) and flow cytometry-fluorescencein situhybridization (flow-FISH). The LNA flow-FISH method and quantitative reverse transcription-PCR (qRT-PCR) were used to monitor the expression of three ncRNAs (6S, CsrB, and TPP-2) inVibrio campbelliiATCC BAA-1116 cultures during lag phase, mid-log phase, and stationary phase. Both LNA flow-FISH and qRT-PCR revealed that CsrB and TPP-2 were highly expressed during lag phase but markedly reduced in mid-log phase and stationary phase, whereas 6S demonstrated no to little expression during lag phase but increased thereafter. Importantly, while LNA flow-FISH and qRT-PCR demonstrated similar overall expression trends, only LNA flow-FISH, which enabled the detection of ncRNAs in individual cells as opposed to the lysate-based ensemble measurements generated by qRT-PCR, was able to capture the cell-to-cell heterogeneity in ncRNA expression. As such, this study demonstrates a new method that simultaneously enables thein situdetection of ncRNAs and the determination of gene expression heterogeneity within an isogenic bacterial population.


2021 ◽  
Vol 9 (1) ◽  
pp. 30
Author(s):  
Fitly Tewal ◽  
Kurniati Kemer ◽  
Joice R.T.S.L. Rimper ◽  
Desy M.H. Mantiri ◽  
Wilmy E Pelle ◽  
...  

Microalgae are organisms that contain chlorophyll and other pigments so they can carry out photosynthesis. Microalgae are widespread in nature and can be found in any environment exposed to sunlight. Microalgae are micro-sized biota with a diameter of less than 2 µm. The benefits of microalgae for other living things, especially humans, are numerous, including as a source of food and ingredients in the manufacture of medicines. Dunaliella sp. is a group of green algae that contains protein, fat and carbohydrates as a good source of food. Growth rate and density of microalgae Dunaliella sp. and the effect of lead acetate with different concentrations was observed using a microscope, starting from the lag phase, the logarithmic phase, the stationary phase and the declination phase. Dunaliella sp. Experiencing an exponential phase in the observation before treatment, namely on the 9th day and then doing the treatment. Treatment with lead acetate with concentrations of 10 ppm, 50 ppm and 80 ppm is very influential in the growth of microalgae. The result is that lead acetate contains toxins that can kill microalgae cells in both low and high concentrations.Keywords: Microalgae, Dunaliella sp., Lead Acetate, Concentration


2015 ◽  
Vol 43 (2) ◽  
pp. 168-171 ◽  
Author(s):  
Parul Mehta ◽  
Goran Jovanovic ◽  
Liming Ying ◽  
Martin Buck

The bacterial cell envelope retains a highly dense cytoplasm. The properties of the cytoplasm change with the metabolic state of the cell, the logarithmic phase (log) being highly active and the stationary phase metabolically much slower. Under the differing growth phases, many different types of stress mechanisms are activated in order to maintain cellular integrity. One such response in enterobacteria is the phage shock protein (Psp) response that enables adaptation to the inner membrane (IM) stress. The Psp system consists of a transcriptional activator PspF, negative regulator PspA, signal sensors PspBC, with PspA and PspG acting as effectors. The single molecule imaging of the PspF showed the existence of dynamic communication between the nucleoid-bound states of PspF and membrane via negative regulator PspA and PspBC sensors. The movement of proteins in the cytoplasm of bacterial cells is often by passive diffusion. It is plausible that the dynamics of the biomolecules differs with the state of the cytoplasm depending on the growth phase. Therefore, the Psp response proteins might encounter the densely packed glass-like properties of the cytoplasm in the stationary phase, which can influence their cellular dynamics and function. By comparing the properties of the log and stationary phases, we find that the dynamics of PspF are influenced by the growth phase and may be controlled by the changes in the cytoplasmic fluidity.


2020 ◽  
Vol 96 (3s) ◽  
pp. 392-395
Author(s):  
В.А. Бутузов ◽  
А.Е. Назаренко ◽  
Н.Ю. Дмитриев ◽  
В.А. Трофимов ◽  
В.А. Косевский ◽  
...  

Представлены результаты разработки цифрового изолятора на основе интегрального микротрансформатора в специализированном корпусе, выполненном по технологии низкотемпературной совместно обжигаемой керамики (LTCC). Согласно результатам измерений тестовых образцов максимальная скорость передачи данных разработанного цифрового изолятора - не менее 30 Мбит/с. The paper presents the results of the development of a digital insulator based on an integral microtransformer in a specialized package made in technology of low-temperature co-fired ceramics. The isolator is a microassembly consisting of a transceiver chip and an integrated transformer. According to the test results, the maximum data rate speed of the developed digital insulator is not less than 30 Mbit/s.


1989 ◽  
Vol 256 (4) ◽  
pp. H1165-H1175 ◽  
Author(s):  
J. N. Weiss ◽  
S. T. Lamp ◽  
K. I. Shine

It has been suggested that increased K+ efflux during myocardial hypoxia and ischemia may result from efflux of intracellularly generated anions such as lactate and inorganic phosphate (Pi) as a mechanism of balancing transsarcolemmal charge movement. To investigate this hypothesis cellular K+ loss using 42K+ and K+-sensitive electrodes, intracellular potential, venous lactate and Pi, and tissue lactate and high-energy phosphates were measured in isolated arterially perfused rabbit interventricular septa during exposure to metabolic inhibitors, hypoxia, and ischemia. Selective inhibition of glycolysis caused a marked increase in K+ efflux despite a fall in lactate production and maintenance of normal cellular high-energy phosphate content. During ischemia and hypoxia net loss of lactate and Pi exceeded K+ loss by a factor of 2-6. However, removal of glucose prior to ischemia or during hypoxia increased K+ loss but reduced lactate loss without affecting Pi loss. During hypoxia, 30 mM exogenous lactate did not alter K+ loss in a manner consistent with changes in passive electrodiffusion of lactate ion. These findings inhibition which is not related to anion efflux assumes greater importance under conditions in which glycolysis is inhibited, e.g., ischemia. Under conditions in which glycolysis is not inhibited, e.g., hypoxia, K+ efflux does not parallel passive electrodiffusion of lactate ions. However, this finding does not exclude the possibility that K+ loss could be coupled to carrier-mediated lactate ion efflux.


1991 ◽  
Vol 24 (6) ◽  
pp. 1042-1050 ◽  
Author(s):  
E. Burkel ◽  
B. Dorner ◽  
Th. Illini ◽  
J. Peisl

Very high-energy resolution measurements using X-rays can be achieved by extreme backreflection (Bragg angle close to 90°) from perfect crystals. This technique, combined with the high intensity of X-rays emitted by synchrotron-radiation sources, allowed the development of the instrument INELAX for inelastic scattering experiments. The principles and test results are discussed.


2019 ◽  
Vol 87 (9) ◽  
Author(s):  
Takeshi Shimizu ◽  
Akio Matsumoto ◽  
Masatoshi Noda

ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) has at least three enzymes, NorV, Hmp, and Hcp, that act independently to lower the toxicity of nitric oxide (NO), a potent antimicrobial molecule. This study aimed to reveal the cooperative roles of these defensive enzymes in EHEC against nitrosative stress. Under anaerobic conditions, combined deletion of all three enzymes significantly increased the NO sensitivity of EHEC determined by the growth at late stationary phase; however, the expression of norV restored the NO resistance of EHEC. On the other hand, the growth of Δhmp mutant EHEC was inhibited after early stationary phase, indicating that NorV and Hmp play a cooperative role in anaerobic growth. Under microaerobic conditions, the growth of Δhmp mutant EHEC was inhibited by NO, indicating that Hmp is the enzyme that protects cells from NO stress under microaerobic conditions. When EHEC cells were exposed to a lower concentration of NO, the NO level in bacterial cells of Δhcp mutant EHEC was higher than those of the other EHEC mutants, suggesting that Hcp is effective at regulating NO levels only at a low concentration. These findings of a low level of NO in bacterial cells with hcp indicate that the NO consumption activity of Hcp was suppressed by Hmp at a low range of NO concentrations. Taken together, these results show that the cooperative effects of NO-metabolizing enzymes are regulated by the range of NO concentrations to which the EHEC cells are exposed.


2012 ◽  
Vol 20 ◽  
pp. 214-221
Author(s):  
JAMAL JALILIAN-MARIAN

Forward rapidity di-hadron azimuthal angular correlations in high energy proton-nucleus and proton-proton collisions are sensitive to quadrupoles; traceless correlator of 4 Wilson lines whereas single inclusive particle production iNVOLVES only dipoles, traceless correlator of 2 Wilson lines. We discuss the progress made in understanding the energy (rapidity) evolution of the quadrupole as well as its various limits.


1955 ◽  
Vol 33 (1) ◽  
pp. 575-589 ◽  
Author(s):  
Morris Kates

Enzymatic liberation of choline from egg lecithin by plastid fractions from sugar beet, spinach, and cabbage leaves and from carrot root was a rapid, first order reaction (up to 70% hydrolysis), and was not preceded by a lag phase. None of the choline-containing products of lecithin degradation (lysolecithin, glycerylphosphorylcholine, or phosphorylcholine) lost choline on incubation with spinach chloroplasts. Inorganic phosphate liberation from lecithin by the plastids was preceded by a lag phase and was much slower than choline liberation. Spinach chloroplasts catalyzed the liberation of inorganic phosphate from L-α-phosphatidic acid and from L-α-glycerophosphate. The water-soluble organic phosphate liberated from lecithin by spinach chloroplasts was identified chromatographically as phosphorylcholine. The ether-soluble organic phosphate produced during the hydrolysis of egg lecithin by carrot plastids was isolated and identified as L-α-phosphatidic acid. These observations suggest that the enzymatic hydrolysis of lecithin by plant plastids involves the following reactions: (1) lecithin → L-α-phosphatidic acid + choline; (2) L-α-phosphatidic acid → inorganic phosphate + diglyceride and/or (3) L-α-phosphatidic acid → glycerophosphate + fatty acids and (4) glycerophosphate → inorganic phosphate + glycerol; and (5) lecithin → phosphorylcholine + diglyceride. The L-α-structure for egg lecithin was confirmed.


2002 ◽  
Vol 49 (3) ◽  
pp. 781-787 ◽  
Author(s):  
Anna Szkopinska ◽  
Ewa Swiezewska ◽  
Joanna Rytka

The yeast Saccharomyces cerevisiae strain W303 synthesizes in the early logarithmic phase of growth dolichols of 14-18 isoprene residues. The analysis of the polyisoprenoids present in the stationary phase revealed an additional family which proved to be also dolichols but of 19-24 isoprene residues, constituting 39% of the total dolichols. The transfer of early logarithmic phase cells to a starvation medium lacking glucose or nitrogen resulted in the synthesis of the longer chain dolichols. The additional family of dolichols represented 13.8% and 10.3% of total dolichols in the glucose and nitrogen deficient media, respectively. The level of dolichols in yeast cells increased with the age of the cultures. Since both families of dolichols are present in stationary phase cells we postulate that the longer chain dolichols may be responsible for the physico-chemical changes in cellular membranes allowing yeast cells to adapt to nutrient deficient conditions to maintain long-term viability.


Sign in / Sign up

Export Citation Format

Share Document