scholarly journals Analisis Mineralogi dan Kimia Dolomit Kabupaten Bone Bolango, Provinsi Gorontalo

2021 ◽  
Vol 9 (2) ◽  
pp. 95-102
Author(s):  
Sufriadin Sufriadin ◽  
Purwanto Purwanto ◽  
Muhammad Rahmatul Jihad ◽  
Astina Aras ◽  
Angelia Santoso ◽  
...  

Characterization of dolomite samples from Bone Bolango, Gorontalo Province have been performed with the objective to find out their mineralogical and chemical compositions. Observation and mineral analyses were carried out by means of microscopy and X-ray diffraction methods respectively; whereas chemical composition was determined by using X-ray fluorescence spectrometer. Result of XRD analysis shows that samples contain dolomite [CaMg(CO3)2], calcite [CaCO3] and [SiO2]. The proportion of dolomite is about 60.4% in average and its presence is as replacement of calcite in bioclast components and matrices in the rock. Dolomite crystals are characterized by mosaic texture with euhedral – subhedral in shapes. Spacially, dolomite content increase from west to the east of study area. The XRF analysis reveals that dolomite samples contain MgO ranging between 8.07 and 20.78% while CaO ranges between 30.04 and 56.13%. The SiO2 concentration ranges from 3.50 – 7.55%; whereas Al2O3 ranges from 1.07 – 1.84%. The average MgO content of dolomite about 12.89% can be categorized as calcium dolomite. Dolomite within the study area can be used directly in agriculture sector, but it less suitable as raw materials in glass, ceramic and refractory industries because the average content of MgO is less than 17%. However, it can be increased of their MgO with the application of selective mining or beneficiation process.

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 779
Author(s):  
David Zemánek ◽  
Karel Lang ◽  
Lukáš Tvrdík ◽  
Dalibor Všianský ◽  
Lenka Nevřivová ◽  
...  

The presented study is focused on optimization and characterization of a high-alumina refractory aggregate based on natural raw materials—kaolins, claystone, and mullite dust by-product (used to increase the alumina and mullite contents, respectively). In total, four individual formulas with the Al2O3 contents between 45 and 50 wt.% were designed; the samples were subsequently fired, both in a laboratory oven and an industrial tunnel furnace. The effects of repeated firing were examined during industrial pilot tests. Mineral and chemical compositions and microstructures, of both the raw materials and designed aggregates, were thoroughly investigated by the means of X-ray fluorescence spectroscopy, powder X-ray diffraction, and optical and scanning electron microscopies. Porosity, mineral composition, and mullite crystal-size development during the firing process were also studied. Based on the acquired results, the formula with the perspective to be used as a new mullite grog, featuring similar properties as the available commercial products, however, with reduced production expenses, was selected. The quality of grog determines to a large extent the properties of the final product. Hence, optimization of aggregates for specific refractories is of a great importance. The production of engineered aggregates provides the opportunity to utilize industrial by-products.


2021 ◽  
Vol 14 (1) ◽  
pp. 6-11
Author(s):  
Dyah Setyaningrum ◽  
Sujiat Sujiat ◽  
Aprilia Nur Azizah

Clay material from Rendeng, Malo, Bojonegoro was studied by mineralogy and physicochemical characterization to evaluate its potential suitability as a raw material in pottery application. X-ray Diffraction (XRD) and Fourier Transform-Infrared (FTIR) spectrometry were used to establish the mineralogy composition. Meanwhile the physical properties were identified by particle size distribution and consistency limits. Chemical composition was carried out by X-ray Fluorescence Spectrometer (XRF).  The results of XRD characterization revealed that clay from Rendeng Village, Malo, Bojonegoro contained  kaolin, quartz, and feldspar. Physical characterization shows that clay material is a less plastic type based on Atterberg method. Based on the chemical compositions indicated that SiO2, Al2O3, CaO, and Fe2O3 were abundance oxides. Therefore, clay from Desa Rendeng was only suitable for the pottery purposes because most of its mineral compositions did not meet the quality requirements for making advanced ceramics.


2017 ◽  
Vol 866 ◽  
pp. 191-194
Author(s):  
Kantamard Lamasai ◽  
Nittaya Jaitanong ◽  
Suparut Narksitipan

The influence of aluminium dross on the phase compositions and microstructure of cement composites were studied in this research. The cement/aluminium dross composites were prepared by adding ground granulated blast-furnace slag (GGBS) from aluminium casting industrial. The sample was added fiber optic and mixed with aluminium dross at 0.1-0.8 wt% of cement. Then, the mixture was poured into a metallic mold (5mm*5mm*5mm). After incubation with saturated lime water for 3 days, the samples were wrapped with plastic films for 7 and 28 days. The chemical compositions of raw materials were characterized by using x-ray fluorescence spectrometry (XRF). The phase compositions and crystalline structure cement/aluminium dross composites were studied by using x-ray diffraction (XRD) technique. Scanning electron microscopy (SEM) was used for characterization of microstructure of these composites.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2160
Author(s):  
Alexander Bogdanov ◽  
Ekaterina Kaneva ◽  
Roman Shendrik

Elpidite belongs to a special group of microporous zirconosilicates, which are of great interest due to their capability to uptake various molecules and ions, e.g., some radioactive species, in their structural voids. The results of a combined electron probe microanalysis and single-crystal X-ray diffraction study of the crystals of elpidite from Burpala (Russia) and Khan-Bogdo (Mongolia) deposits are reported. Some differences in the chemical compositions are observed and substitution at several structural positions within the structure of the compounds are noted. Based on the obtained results, a detailed crystal–chemical characterization of the elpidites under study was carried out. Three different structure models of elpidite were simulated: Na2ZrSi6O15·3H2O (related to the structure of Russian elpidite), partly Ca-replaced Na1.5Ca0.25ZrSi6O15·2.75H2O (close to elpidite from Mongolia), and a hypothetical CaZrSi6O15·2H2O. The vibration spectra of the models were obtained and compared with the experimental one, taken from the literature. The strong influence of water molecule vibrations on the shape of IR spectra of studied structural models of elpidite is discussed in the paper.


2020 ◽  
Vol 849 ◽  
pp. 113-118
Author(s):  
Yayat Iman Supriyatna ◽  
Slamet Sumardi ◽  
Widi Astuti ◽  
Athessia N. Nainggolan ◽  
Ajeng W. Ismail ◽  
...  

The purpose of this study is to characterize Lampung iron sand and to conduct preliminary experiments on the TiO2 synthesis which can be used for the manufacturing of functional food packaging. The iron sand from South Lampung Regency, Lampung Province that will be utilized as raw material. The experiment was initiated by sieving the iron sand on 80, 100, 150, 200 and 325 mesh sieves. Analysis using X-Ray Fluorescence (XRF) to determine the element content and X-Ray Diffraction (XRD) to observe the mineralization of the iron sand was conducted. The experiment was carried out through the stages of leaching, precipitation, and calcination. Roasting was applied firstly by putting the iron sand into the muffle furnace for 5 hours at a temperature of 700°C. Followed by leaching using HCl for 48 hours and heated at 105°C with a stirring speed of 300 rpm. The leaching solution was filtered with filtrate and solid residue as products. The solid residue was then leached using 10% H2O2 solution. The leached filtrate was heated at 105°C for 40 minutes resulting TiO2 precipitates (powder). Further, the powder was calcined and characterized. Characterization of raw material using XRF shows the major elements of Fe, Ti, Mg, Si, Al and Ca. The highest Ti content is found in mesh 200 with 9.6%, while iron content is about 80.7%. While from the XRD analysis, it shows five mineral types namely magnetite (Fe3O4), Rhodonite (Mn, Fe, Mg, Ca) SiO3, Quart (SiO2), Ilmenite (FeOTiO2) and Rutile (TiO2). The preliminary experiment showed that the Ti content in the synthesized TiO2 powder is 21.2%. The purity of TiO2 is low due to the presence of Fe metal which is dissolved during leaching, so that prior to precipitation purification is needed to remove impurities such as iron and other metals.


2017 ◽  
Vol 31 (35) ◽  
pp. 1750337
Author(s):  
Guoxuan Qin ◽  
Yanan Wang ◽  
Shentong Mo ◽  
Xing Fu ◽  
Hui Wang ◽  
...  

In this paper, ZnO nanobelts have been partially high-quality synthesized employing diverse reactant mass ratios between zinc acetate [Zn(AC)2] and polyvinyl alcohol (PVA) without any catalyst. The maximum temperature required for the whole reaction process is no more than 650[Formula: see text]C. The morphologies of ZnO nanomaterials fabricated from distinct reactant concentrations have been systematically investigated by means of field-emission scanning electron microscopy (FESEM). X-ray diffraction (XRD) analysis identifies that ZnO nanobelts exhibit a typical wurtzite structure. Through fluorescence spectrometer, the photoluminescence (PL) spectra generated by ZnO nanomaterials corresponding to different reactant concentrations have disparate peak intensities and luminescence wavelengths. This phenomenon indicates that novel-synthesized ZnO nanomaterial shows great potential in changing the optical properties of light-emitting devices. In addition, synthetic ZnO nanobelts exhibit excellent UV emission capability.


Author(s):  
M.T. Blatchford ◽  
A.J. Horlock ◽  
D.G. McCartney ◽  
P.H. Shipway ◽  
J.V. Wood

Abstract In this paper, the production of NiCr-TiC powder by SHS, suitable for HVOF spraying, is discussed together with results on the microstructure and coating properties. Compacts for SHS were prepared by mixing elemental Ti and C with pre-alloyed Ni-20wt.% Cr powder to give an overall composition of 35wt.% NiCr and 65wt.% TiC. These were then ignited and a self-sustaining reaction proceeded to completion. Reacted compacts were crushed, sieved, and classified to give feedstock powders in size ranges of 10-45 µm and 45-75 µm. All powder was characterized prior to spraying based on particle size distribution, x-ray diffraction (XRD), and scanning electron microscopy (SEM/EDS). Thermal spraying was performed using both H2 and C3H6 as fuel gases in a UTP/Miller Thermal HVOF system. The resulting coatings were characterized by SEM and XRD analysis, and the microstructures correlated with powder size and spray conditions. Abrasive wear was determined by a modified 'dry sand rubber wheel' (DSRW) test and wear rates were measured. It has been found that wear rates comparable to those of HVOF sprayed WC-17wt% Co coatings can be achieved.


2012 ◽  
Vol 616-618 ◽  
pp. 1732-1735 ◽  
Author(s):  
Xi Hai Shen ◽  
Yu Gang Zheng ◽  
Liang Chang ◽  
Jin Jia Guo ◽  
Song Bin Ye ◽  
...  

Aiming at the glass-to-metal seals serving in the Solar Thermal Power (STP), glass-to-metal vacuum brazed joints were studied. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis were performed to examine the microstructure and element contents of interface seam on the glass-to-metal vacuum brazed joints. Also, the compositional concentration of the interface seam was measured by using energy dispersive spectroscopy (EDS).


2012 ◽  
Vol 581-582 ◽  
pp. 570-573
Author(s):  
Jia Feng Zhang ◽  
Bao Zhang ◽  
Xue Yi Guo ◽  
Jian Long Wang ◽  
He Zhang Chen ◽  
...  

The LiFe0.98Ni0.01Nb0.01PO4/C was synthesized by carbon reduction route using FePO4•2H2O as precursor. The LiFe0.98Ni0.01Nb0.01PO4/C sample was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and electrochemical measurements. The XRD analysis, SEM and TEM images show that sample has the good crystal structure, morphology and carbon coating. The charge-discharge tests demonstrate that the powder has the better electrochemical properties, with an initial discharge capacity of 164.6 mAh•g−1 at current density of 0.1 C. The capacity retention reaches 99.8% after 100 cycles at 0.1C.


2010 ◽  
Vol 97-101 ◽  
pp. 1091-1096
Author(s):  
Dong Fang Han ◽  
Qun Tang ◽  
Qing Meng Zhang ◽  
Lei Wang ◽  
Ju Du

The structure and property of Ce-doped Ba0.2Sr0.8TiO3 (BST) were investigated as a function of Ce content. The density experiment results confirmed that increasing the Ce doping ratio caused the decrease in shrinkage factor of BST in the sintering procedure. Additionally, both Scanning Electron Microscope (SEM) and X-ray diffraction (XRD) analysis showed that the grain size of Ce-doped BST was dependent on the Ce content. Further more, the dielectric constant and dielectric loss had a curve relationship with increasing Ce content. The improvement of the electrical properties of Ce doping BST may be related to the decrease in the concentration of oxygen vacancies. According to the research, the diameter of grain, the dielectric constant and loss factor of the 1mol% Ce-doped Ba0.2Sr0.8TiO3 were 500nm, 365.8 and 0.0063, respectively.


Sign in / Sign up

Export Citation Format

Share Document