scholarly journals Immunohistochemical Demonstration of Blood Vessels Alpha-Actin Down-Regulation in LPS-Treated Pregnant Mice

2012 ◽  
pp. 551-553
Author(s):  
B. ZAVAN ◽  
A. GIUSTI-PAIVA ◽  
R. SONCINI ◽  
A. M. DO AMARANTE-PAFFARO ◽  
V. A. PAFFARO

Lipopolysaccharide (LPS), produced by gram-negative bacteria, mediates vasodilatation, changing the action of contractile smooth muscle by increasing expression of nitric oxide synthase and prostaglandin. For the first time we demonstrate, by immunohistochemical methods, that administration of LPS to pregnant mice causes α-actin-mediated down-regulation of contractile filaments in uterine blood vessels, thereby potentially increasing vessels permeability, blood supply, and immune cells homing to this environment, culminating in the reestablishment of uterine homeostasis.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mark A. T. Blaskovich ◽  
Angela M. Kavanagh ◽  
Alysha G. Elliott ◽  
Bing Zhang ◽  
Soumya Ramu ◽  
...  

AbstractAntimicrobial resistance threatens the viability of modern medicine, which is largely dependent on the successful prevention and treatment of bacterial infections. Unfortunately, there are few new therapeutics in the clinical pipeline, particularly for Gram-negative bacteria. We now present a detailed evaluation of the antimicrobial activity of cannabidiol, the main non-psychoactive component of cannabis. We confirm previous reports of Gram-positive activity and expand the breadth of pathogens tested, including highly resistant Staphylococcus aureus, Streptococcus pneumoniae, and Clostridioides difficile. Our results demonstrate that cannabidiol has excellent activity against biofilms, little propensity to induce resistance, and topical in vivo efficacy. Multiple mode-of-action studies point to membrane disruption as cannabidiol’s primary mechanism. More importantly, we now report for the first time that cannabidiol can selectively kill a subset of Gram-negative bacteria that includes the ‘urgent threat’ pathogen Neisseria gonorrhoeae. Structure-activity relationship studies demonstrate the potential to advance cannabidiol analogs as a much-needed new class of antibiotics.


1973 ◽  
Vol 19 (8) ◽  
pp. 887-894
Author(s):  
Linda Poffenroth ◽  
J. W. Costerton ◽  
Nonna Kordová ◽  
John C. Wilt

Electron microscopic examination of a semipurified Chlamydia psittaci 6BC strain attenuated in chick embryo yolk sac revealed for the first time two morphologically distinct small elementary bodies which differ both in the ultrastructure of their surface layers and in their buoyant densities in sucrose gradients. Also, the morphology of the surface layers of the larger reticulate forms in cell-free systems is described for the first time. Many points of difference between the surface envelopes and internal structure of chlamydial particles and those of Gram-negative bacteria are discussed.


2010 ◽  
Vol 192 (24) ◽  
pp. 6329-6335 ◽  
Author(s):  
A. K. Fenton ◽  
M. Kanna ◽  
R. D. Woods ◽  
S.-I. Aizawa ◽  
R. E. Sockett

ABSTRACT The Bdellovibrio are miniature “living antibiotic” predatory bacteria which invade, reseal, and digest other larger Gram-negative bacteria, including pathogens. Nutrients for the replication of Bdellovibrio bacteria come entirely from the digestion of the single invaded bacterium, now called a bdelloplast, which is bound by the original prey outer membrane. Bdellovibrio bacteria are efficient digesters of prey cells, yielding on average 4 to 6 progeny from digestion of a single prey cell of a genome size similar to that of the Bdellovibrio cell itself. The developmental intrabacterial cycle of Bdellovibrio is largely unknown and has never been visualized “live.” Using the latest motorized xy stage with a very defined z-axis control and engineered periplasmically fluorescent prey allows, for the first time, accurate return and visualization without prey bleaching of developing Bdellovibrio cells using solely the inner resources of a prey cell over several hours. We show that Bdellovibrio bacteria do not follow the familiar pattern of bacterial cell division by binary fission. Instead, they septate synchronously to produce both odd and even numbers of progeny, even when two separate Bdellovibrio cells have invaded and develop within a single prey bacterium, producing two different amounts of progeny. Evolution of this novel septation pattern, allowing odd progeny yields, allows optimal use of the finite prey cell resources to produce maximal replicated, predatory bacteria. When replication is complete, Bdellovibrio cells exit the exhausted prey and are seen leaving via discrete pores rather than by breakdown of the entire outer membrane of the prey.


Author(s):  
Eve C. Southward

Prokaryote organisms, with characteristics of Gram-negative bacteria, occur intracellularly in Pogonophora, as described here for seven small species. The tissue containing the bacteria lies between the two longitudinal blood vessels in the posterior part of the trunk and has a special blood supply. This tissue is probably homologous with the so-called trophosome tissue of the much larger vestimentiferan pogonophores, which also contains bacteria, and the term can be applied to all pogonophores. The presence of such bacteria-containing trophosome tissue may be a characteristic of the phylum. In both large and small species examined the bacteria appear to be chemoautotrophs and probably assist the nutrition and/or metabolism of their hosts. It is not yet certain if the bacterium-containing cells do originate from mesoderm or endoderm, but, if the latter, then the trophosome represents the remains of the missing gut. The trophosome tissue situated internally, and transfer of bacteria must take place early in the life history, in the egg or embryo.


2009 ◽  
Vol 55 (5) ◽  
pp. 627-632 ◽  
Author(s):  
Thomas Candela ◽  
Marie Moya ◽  
Michel Haustant ◽  
Agnès Fouet

Poly-γ-glutamate has been described in many Gram-positive organisms. When anchored to the surface, it is a capsule and as such a virulence factor. Based on sequence similarities, few Gram-negative organisms have been suggested to synthesize poly-γ-glutamate. For the first time, a Gram-negative bacterium, Fusobacterium nucleatum , is shown to produce and secrete poly-γ-glutamate. Putative poly-γ-glutamate-synthesizing genes from Gram-negative organisms have been compared with their Gram-positive homologs by in silico analysis, i.e., gene sequence and phylogenetic analysis. Clusters of three instead of four genes were highlighted by our screen. The products of the first two genes display similarity with their Gram-positive equivalents, yet the sequences from the Gram-negative organisms can be distinguished from those of the Gram-positives. Interestingly, the sequence of the predicted product of the third gene is conserved among Gram-negative bacteria but displays no similarity to that of either the third or fourth gene of the Gram-positive operons. It is suggested that, like for Gram-positive bacteria, poly-γ-glutamate has a role in virulence for pathogens and one in survival for other Gram-negative bacteria.


Pathogens ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 375
Author(s):  
Kristen M Holland-Tummillo ◽  
Lauren E Shoudy ◽  
Donald Steiner ◽  
Sudeep Kumar ◽  
Sarah J Rosa ◽  
...  

The targeting of immunogens/vaccines to specific immune cells is a promising approach for amplifying immune responses in the absence of exogenous adjuvants. However, the targeting approaches reported thus far require novel, labor-intensive reagents for each vaccine and have primarily been shown as proof-of-concept with isolated proteins and/or inactivated bacteria. We have engineered a plasmid-based, complement receptor-targeting platform that is readily applicable to live forms of multiple gram-negative bacteria, including, but not limited to, Escherichia coli, Klebsiella pneumoniae, and Francisella tularensis. Using F. tularensis as a model, we find that targeted bacteria show increased binding and uptake by macrophages, which coincides with increased p38 and p65 phosphorylation. Mice vaccinated with targeted bacteria produce higher titers of specific antibody that recognizes a greater diversity of bacterial antigens. Following challenge with homologous or heterologous isolates, these mice exhibited less weight loss and/or accelerated weight recovery as compared to counterparts vaccinated with non-targeted immunogens. Collectively, these findings provide proof-of-concept for plasmid-based, complement receptor-targeting of live gram-negative bacteria.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Marcin Rozalski ◽  
Bartlomiej Micota ◽  
Beata Sadowska ◽  
Anna Stochmal ◽  
Dariusz Jedrejek ◽  
...  

New antimicrobial properties of products derived fromHumulus lupulusL. such as antiadherent and antibiofilm activities were evaluated. The growth of gram-positive but not gram-negative bacteria was inhibited to different extents by these compounds. An extract of hop cones containing 51% xanthohumol was slightly less active againstS. aureusstrains (MIC range 31.2–125.0 μg/mL) than pure xanthohumol (MIC range 15.6–62.5 μg/mL). The spent hop extract, free of xanthohumol, exhibited lower but still relevant activity (MIC range 1-2 mg/mL). There were positive coactions of hop cone, spent hop extracts, and xanthohumol with oxacillin against MSSA and with linezolid against MSSA and MRSA. Plant compounds in the culture medium at sub-MIC concentrations decreased the adhesion ofStaphylococcito abiotic surfaces, which in turn caused inhibition of biofilm formation. The rate of mature biofilm eradication by these products was significant. The spent hop extract at MIC reduced biofilm viability by 42.8%, the hop cone extract by 74.8%, and pure xanthohumol by 86.5%. When the hop cone extract or xanthohumol concentration was increased, almost complete biofilm eradication was achieved (97–99%). This study reveals the potent antibiofilm activity of hop-derived compounds for the first time.


2022 ◽  
Vol 905 ◽  
pp. 210-217
Author(s):  
Qian Qian Chen

Hydrogen peroxide (H2O2) is a significant signal molecule in physiological and pathological processes. Levels of H2O2 in bacteria are proved to be a key factor in immune response. To sum up, detection of H2O2 levels in living bacteria is remarkable for further study of its physiological and pathological effects. Herein, we propose a novel ratiometric fluorescent probe (Nahp) to detect H2O2 in living cells and bacteria. In addition, based on boronate, Nahp has satisfactory selectivity and sensitivity toward H2O2 (LOD = 0.158 μM). Furthermore, with excellent detection performance to H2O2, Nahp is successfully used for fluorescent bioimaging of H2O2 and measuring H2O2 accumulation in bacteria. Most importantly, the probe was also used to image H2O2 in three Gram-negative bacteria, clearly revealing for the first time significant differences in H2O2 expression levels in live bacteria.


2011 ◽  
Vol 322 ◽  
pp. 160-163
Author(s):  
Yin Lu ◽  
Hong Chen

A medicinal wild kiwi in China, Actinidia valvata Dunn, has been well known for its activities against leprosy and cancers. The compositions and the antimicrobial activity of its leaf oil were reported for the first time. The oil obtained by hydrodistillation and analyzed by GC and GC-MS, was characterized by the high content of monoterpenes. Linalool (48.14%) is the major component identified, followed by 1,2-dimethyl-lindoline (7.94%), linolenic acid methylester (6.57%) and (E)-phytol (5.29%). The antimicrobial activity of the oil was evaluated against four bacterial and three fungal species. The results showed that it exhibited a mild antibacterial activity against two Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis), a significant activity against Gram-negative bacteria (Escherichia coli), and no activity on Pseudomonas aeruginosa. The test fungi were more sensitive to the oil, with a MIC range of 0.78~1.56 μL/mL than bacteria in the range which were significantly higher from 0.78 to 25.50 μL/mL.


Sign in / Sign up

Export Citation Format

Share Document