scholarly journals DESIGN AND SIMULATION OF TORSION BAR(ARB) FOR FSAE USING MATLAB

Author(s):  
Parimala Pavan Jonnada ◽  
Dr. Sreekanth Dondapati

Formula SAE is a student design competition organized by SAE International (previously known as the Society of Automotive Engineers, SAE). The concept behind Formula SAE is that a fictional manufacturing company has contracted a student design team to develop a small Formulastyle race car. The prototype race car is to be evaluated for its potential as a production item. Each student team designs, builds and tests a prototype based on a series of rules, whose purpose is both ensuring on-track safety and promoting clever problem solving. An anti-roll bar is a part of automobile suspensions that helps reduce the body roll of a vehicle during fast cornering or over road irregularities. It connects opposite wheels together through short lever arms linked by a torsion spring. A sway bar increases the suspension's roll stiffness—its resistance to roll in turns, independent of its spring rate in the vertical direction. In this research paper, calculation for the anti-roll bar mechanism will be simpler, and more accurate than hand calculations. Calculation was done using MATLAB and further analysis using FEA in ANSYS.

Author(s):  
Ismail Fidan ◽  
Adam McGough ◽  
Jeff Foote

Formula SAE (FSAE) is a design competition organized each year by the Society of Automotive Engineers (SAE). The objective of the competition is to bring the best and brightest future engineers from each participating school to present a small scale race car. Although this sounds like a relatively simple concept, the actual execution is rather challenging and rewarding for the team. For almost three years Tennessee Tech University (TTU) has had a FSAE team. The first year was a planning year, so Tennessee Tech University has participated in the competition for the last two years. Both years have been extreme learning experiences since TTU was not prepared for the level of competition brought by participating schools. However TTU FSAE team is beginning to implement modern design tools such as FEA, Virtual Manufacturing, and Rapid Prototyping to help streamline the design efforts so that one day Golden Eagle FSAE will be one of the top competing teams. In this publication, authors will report on one Golden Eagle FSAE component (the rear upright) development stages and its accomplishments.


Author(s):  
Isaac Van Baren ◽  
Andrew Van Milligan ◽  
Scott Ashcraft ◽  
Stephen Rosser ◽  
Xiuling Wang

Abstract This project developed a study on methods to increase downforce on the university’s Formula SAE vehicle by implementing a lightweight, efficient aerodynamic design. The team planned to improve the performance and reduce lap times of the vehicle with an undertray, which grants better wheel traction and stability while handling corners. Upon completion, the aerodynamic component would have allowed the PNW Motorsports team to more effectively compete at the FSAE design competition in the spring of 2020. While reducing drag, an undertray provides the capability to direct the air beneath the vehicle chassis in a way which adds “artificial weight” to the system. A pressure gradient of high magnitude is established between the two sides of the undertray, with a low negative pressure region found beneath the body. This design is based upon the principles of fluid dynamics, in particular the venturi effect through the use of nozzles and diffusers. In this fashion, the vehicle can receive the benefits of a heavier car around corners while maintaining the higher straight-line acceleration of a lighter car. This report describes the use of simulation software in the design of an undertray, as well as the approach to manufacture it. Two-dimensional benchmark cases were performed in the replication of results obtained in a literature search. Subsequently, the undertray model was optimized with CFD and FEA/FEM techniques to obtain a component that was prepared for manufacturing. An operating procedure was established to outline the complicated steps of its assembly. Finally, it provides future aerodynamics teams with a solid foundation upon which improvements can be made.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3849
Author(s):  
Martin Svoboda ◽  
Milan Chalupa ◽  
Karel Jelen ◽  
František Lopot ◽  
Petr Kubový ◽  
...  

The article deals with the measurement of dynamic effects that are transmitted to the driver (passenger) when driving in a car over obstacles. The measurements were performed in a real environment on a defined track at different driving speeds and different distributions of obstacles on the road. The reaction of the human organism, respectively the load of the cervical vertebrae and the heads of the driver and passenger, was measured. Experimental measurements were performed for different variants of driving conditions on a 28-year-old and healthy man. The measurement’s main objective was to determine the acceleration values of the seats in the vehicle in the vertical movement of parts of the vehicle cabin and to determine the dynamic effects that are transmitted to the driver and passenger in a car when driving over obstacles. The measurements were performed in a real environment on a defined track at various driving speeds and diverse distributions of obstacles on the road. The acceleration values on the vehicle’s axles and the structure of the driver’s and front passenger’s seats, under the buttocks, at the top of the head (Vertex Parietal Bone) and the C7 cervical vertebra (Vertebra Cervicales), were measured. The result of the experiment was to determine the maximum magnitudes of acceleration in the vertical direction on the body of the driver and the passenger of the vehicle when passing a passenger vehicle over obstacles. The analysis of the experiment’s results is the basis for determining the future direction of the research.


MRS Advances ◽  
2018 ◽  
Vol 3 (50) ◽  
pp. 3003-3009 ◽  
Author(s):  
Aditya N. Sardesai ◽  
Xavier M. Segel ◽  
Matthew N. Baumholtz ◽  
Yiheng Chen ◽  
Ruhao Sun ◽  
...  

ABSTRACTOne of the goals of soft robotics is the ability to interface with the human body. Traditionally, silicone materials have dominated the field of soft robotics. In order to shift to materials that are more compatible with the body, developments will have to be made into biodegradable and biocompatible soft robots. This investigation focused on developing gummy actuators which are biodegradable, edible, and tasty. Creating biodegradable and edible actuators can be both sold as an interactive candy product and also inform the design of implantable soft robotic devices. First, commercially available gelatin-based candies were recast into pneumatic actuators utilizing molds. Edible robotic devices were pneumatically actuated repeatedly (up to n=8 actuations) using a 150 psi power inflator. To improve upon the properties of actuators formed from commercially available candy, a novel gelatin-based formulation, termed the “Fordmula” was also developed and used to create functional actuators. To investigate the mechanics and functionality of the recast gummy material and the Fordmula, compression testing and biodegradation studies were performed. Mechanical compression tests showed that recast gummy materials had similar properties to commercially available candies and at low strain had similar behavior to traditional silicone materials. Degradation studies showed that actuation was possible within 15 minutes in a biologically relevant solution followed by complete dissolution of the actuator afterwards. A taste test with elementary aged children demonstrated the fun, edible, and educational appeal of the candy actuators. Edible actuator development was an entry and winning submission in the High School Division of the Soft Robotics Toolkit Design Competition hosted by Harvard University. Demonstration of edible soft robotic actuators created by middle and high school aged students shows the applicability of the Soft Robotics Toolkit for K12 STEM education.


Author(s):  
Oktay Baysal ◽  
Terry L. Meek

Since the goal of racing is to win and since drag is a force that the vehicle must overcome, a thorough understanding of the drag generating airflow around and through a race car is greatly desired. The external airflow contributes to most of the drag that a car experiences and most of the downforce the vehicle produces. Therefore, an estimate of the vehicle’s performance may be evaluated using a computational fluid dynamics model. First, a computer model of the race car was created from the measurements of the car obtained by using a laser triangulation system. After a computer-aided drafting model of the actual car was developed, the model was simplified by removing the tires, roof strakes, and modification of the spoiler. A mesh refinement study was performed by exploring five cases with different mesh densities. By monitoring the convergence of the computed drag coefficient, the case with 2 million elements was selected as being the baseline case. Results included flow visualization of the pressure and velocity fields and the wake in the form of streamlines and vector plots. Quantitative results included lift and drag, and the body surface pressure distribution to determine the centerline pressure coefficient. When compared with the experimental results, the computed drag forces were comparable but expectedly lower than the experimental data mainly attributable to the differences between the present model and the actual car.


2019 ◽  
Vol 9 (24) ◽  
pp. 5328 ◽  
Author(s):  
Diwakar Harsh ◽  
Barys Shyrokau

Formula Society of Automotive Engineers (SAE) (FSAE) is a student design competition organized by SAE International (previously known as the Society of Automotive Engineers, SAE). Commonly, the student team performs a lap simulation as a point mass, bicycle or planar model of vehicle dynamics allow for the design of a top-level concept of the FSAE vehicle. However, to design different FSAE components, a full vehicle simulation is required including a comprehensive tire model. In the proposed study, the different tires of a FSAE vehicle were tested at a track to parametrize the tire based on the empirical approach commonly known as the magic formula. A thermal tire model was proposed to describe the tread, carcass, and inflation gas temperatures. The magic formula was modified to incorporate the temperature effect on the force capability of a FSAE tire to achieve higher accuracy in the simulation environment. Considering the model validation, the several maneuvers, typical for FSAE competitions, were performed. A skidpad and full lap maneuvers were chosen to simulate steady-state and transient behavior of the FSAE vehicle. The full vehicle simulation results demonstrated a high correlation to the measurement data for steady-state maneuvers and limited accuracy in highly dynamic driving. In addition, the results show that neglecting temperature in the tire model results in higher root mean square error (RMSE) of lateral acceleration and yaw rate.


1987 ◽  
Vol 109 (3) ◽  
pp. 210-217 ◽  
Author(s):  
Farid M. L. Amirouche

A computer-automated approach for studying the human body vibration is presented. This includes vertical, horizontal, and torsional vibration. The procedure used is based on Finite Segment Modeling (FSM) of the human body, thus treating it as a mechanical structure. Kane’s equations as developed by Huston et al. are used to formulate the governing equations of motion. The connective tissues are modeled by springs and dampers. In addition, the paper presents the transient response of different parts of the body due to a sinusoidal forcing function as well as an impulse function applied to the lower torso in the vertical direction.


Author(s):  
Henrique de Carvalho Pinheiro ◽  
Francesco Russo ◽  
Lorenzo Sisca ◽  
Alessandro Messana ◽  
Davide De Cupis ◽  
...  

Abstract Active aerodynamics is a growing field in the race car and high-performance vehicles segments, since each situation on the track may require different aero forces to achieve the best vehicle dynamics performance. This paper presents an active aerodynamics control system developed through the active control of the body trim. By interchanging four different setups on the suspension heights with a fuzzy logic control, relevant advantage is obtained in terms of lap time reduction. Two systems, a PID and a Feedforward logic, are studied to implement the control strategy and important differences are found in the stability of tire-ground forces benefiting the latter. Furthermore, the system was validated in a Driver-In-the-Loop (DIL) static simulator with a more realistic road conditions and important insights in terms of subjective evaluation.


2019 ◽  
Vol 24 (S1) ◽  
pp. 26-29
Author(s):  
Pit Peiffer ◽  
Cyriak Heierli
Keyword(s):  

2018 ◽  
Vol 178 ◽  
pp. 05014 ◽  
Author(s):  
Andrzej Baier ◽  
Łukasz Grabowski ◽  
Łukasz Stebel ◽  
Mateusz Komander ◽  
Przemysław Konopka ◽  
...  

Numerical analysis of drag values of an electric race car's body. Silesian Greenpower is a student organization specializing in electric race car design. One of the most important issues during the design is reducing the vehicle drag to minimum and is done, mainly, by designing a streamline car body. The aim of this work was to design two electric cars bodies with different shape in Siemens NX CAD software, next a finite elements mesh was created and implemented into the ANSYS Workbench 16.1 software. Afterwards an aerodynamic analysis was carried out, using the finite element method (FEM). Simulations and calculations have been performed in ANSYS Fluent: CFD Simulation software. Computer simulation allowed to visualize the distribution of air pressure on and around car, the air velocity distribution around the car and aerodynamics streamline trajectory. The results of analysis were used to determine the drag values of electric car and determine points of the highest drag. In conclusion car body representing lower drag was appointed. The work includes theoretical introduction, containing information about finite element method, ANSYS and Siemens NX software and also basic aerodynamics laws.


Sign in / Sign up

Export Citation Format

Share Document