THE EFFECT OF POROSITY ON ENGINEERING PROPERTIES OF VESICULAR AMYGDALOIDAL BASALTS

Author(s):  
P .S.K.Murthy ◽  
Sachin Gupta ◽  
Dhirendra Kumar ◽  
Mahabir Dixit

The interconnection of vesicles in basaltic flows greatly affects the engineering properties such as uniaxial compressive strength, modulus of elasticity, Poisson’s ratio, tensile strength and sonic velocities. Sometimes these vesicles are filled with secondary minerals such as quartz/olivine/calcite form as amygdules (which are impermeable). In the present study, to understand effect of porosity, vesicular and amygdular basaltic flows collected from central and west-central India were investigated for these engineering properties and correlated with apparent porosity of core samples. It is observed that a good level of correlation is obtained for uniaxial compressive strength (UCS), elastic modulus (E) and Poisson’s ratio in vesicular basalts when porosity >8-10%. In case of Brazilian strengths a linearly downward trend is observed with the increase in porosity values. And, no significant correlation is observed for waves’ velocities in both variants of basalts.

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Mingxing Gao ◽  
Yongli Liu

Water injection in coal seams will lead to the increase of moisture content in coal, which plays an essential role in the physical and mechanical properties of coal. In order to study the influence of moisture content on the mechanical properties of soft media, the forming pressure (20 MPa) and particle size ratio (0-1 mm (50%), 1-2 mm (25%), and 2-3 mm (25%)) during briquette preparation were firstly determined in this paper. Briquettes with different moisture contents (3%, 6%, 9%, 12%, and 15%) were prepared by using self-developed briquettes. Uniaxial and triaxial compression tests were carried out using the RMT-150C rock mechanics test system. The results show that the uniaxial compressive strength and elastic modulus of briquette samples increase first and then decrease with the increase of briquette water, while Poisson’s ratio decreases first and then increases with the increase of briquette water. When the moisture content is around 9%, the maximum uniaxial compressive strength is 0.866 MPa, the maximum elastic modulus is 1.385 GPa, and Poisson’s ratio is at the minimum of 0.259. The compressive strength of briquettes increases with the increase of confining pressure. With the increase of moisture content, the cohesion and internal friction angle of briquettes first increased and then decreased.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Qi Liu ◽  
Shaojie Chen ◽  
Shuai Wang ◽  
Jing Chai ◽  
Dingding Zhang

A new type of similar material considering water characteristics is developed through orthogonal experiments. The similar material is composed of river sand, barite powder, cement, gypsum, and water. We determine the best test development process. First, the proportion test scheme is designed based on the orthogonal test. Then, the effects of the moisture content, mass ratio of aggregate to binder and other components on the density, uniaxial compressive strength, elastic model, and Poisson’s ratio of similar materials are analyzed by range analysis. Finally, the multiple linear regression equation between the parameters and the composition of similar materials is obtained, and the optimal composition ratio is determined according to the relationship between the test’s influencing factors and the mechanical properties of similar materials. The results show that the selected raw materials and their proportioning method are feasible. The content of barite powder plays a major role in controlling the density and Poisson’s ratio of similar materials. The mass ratio of aggregate to binder is the main factor that affects the uniaxial compressive strength and elastic modulus of similar materials, while the moisture content has the second largest effect on the density, uniaxial compressive strength, elastic modulus, and Poisson’s ratio of similar materials. When the residual moisture content increased from 0 to 4%, the uniaxial compressive strength and elastic modulus of similar materials decrease by 49.5% and 53.3%, respectively, and Poisson’s ratio increases by 54.8%. Determining the residual moisture content that matches the design of similar material model tests is critical to improving the test accuracy and provides a reference to prepare similar materials with different requirements.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Han Meng ◽  
Yuzhong Yang ◽  
Liyun Wu ◽  
Fei Wang ◽  
Lei Peng

Briquette coals with different cement contents are frequently used to study the coal body’s properties. In this study, the deformation and strength of briquette coal samples with 0, 5, 10, and 20% cement contents were experimentally and theoretically investigated using the acoustic emission (AE) characteristics monitored during the uniaxial compression tests. The results show that the uniaxial compression process of raw coal and briquette coal samples can be subdivided into compaction, elastic, plastic (yield), and brittle failure stages. With an increase in cement content, briquette coal samples undergo the elastic and plastic stages, and their postpeak stress drop rate gradually grows, and their plastic deformation is followed by brittle failure. The uniaxial compressive strength and elastic modulus of briquette coal samples show a linearly increasing relationship with cement content, while their Poisson’s ratio decreases gradually. During the uniaxial compression, raw coal and briquette coal samples produce the AE signals. The overall AE signal of briquette coal samples is relatively low, and there are no obvious AE events in raw coal samples. The uniaxial compressive strength, elastic modulus, and Poisson’s ratio of briquette coal samples with a 20% cement content and their AE signal cumulative amplitude, count, and energy values are very close to the corresponding parameters of raw coal samples. Therefore, they can be used for simulating raw coal samples in laboratory tests.


2018 ◽  
Vol 250 ◽  
pp. 05005
Author(s):  
Nabihah Mohd Zamzani ◽  
Azree Othuman Mydin ◽  
Abdul Naser Abdul Ghani

In the last few years, there is emerging attention in using Lightweight Foamed Concrete (LFC) as a lightweight non-structural and semi-structural element in buildings to take advantage of its excellent insulation properties. Though, LFC has been noticed to have some disadvantages: considerable brittleness; results in low compressive and flexural strength, poor fracture toughness, poor resistance to crack propagation and low impact strength. Coconut fibre obtained from coconut husk, belonging to the family of palm fibres, is agricultural waste products obtained in the processing of coconut oil. In Malaysia, they are available in large quantities. Coconut fibre is extracted from the outer shell of a coconut. There are many general advantages of coconut fibres e.g. they are moth-proof, resistant to fungi and rot, provide excellent insulation against temperature and sound, not easily combustible, flame-retardant, unaffected by moisture and dampness, tough and durable, resilient, springs back to shape even after constant use, totally static free and easy to clean. Hence this study is intended to look into the potential of coconut fiber in enhancing the engineering properties of LFC. There are 5 engineering properties will be focused in this study which are flexural strength, splitting tensile strength, compressive strength, Poisson’s ratio and Poisson’s ratio toughness. Three densities of LFC of 800 kg/m3, 1100 kg/m3 and 1400 kg/m3 were cast and tested. The ratio of cement, sand and water used in this study was 1:1.5:0.49. Coconut fibers were used as additives at 0.12%, 0.24%, 0.36%, 0.48% and 0.60% by volume of the total mix. Test results indicated that the engineering properties of LFC strengthen with coconut fiber had increased soundly. Coconut fiber inclusion changes the post-peak response at the load-deflection curves for the samples, which modifies the failure mode and enhance the flexural strength, compressive strength and splitting tensile strength.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Qi Liu ◽  
Bing Liang ◽  
Weiji Sun ◽  
Hang Zhao

This paper studies the anisotropic characteristics of shale and the difference in mechanical performance between deep shale and outcrop shale. The outcrop shale was collected from the Shuanghe section in Changning County, southern Sichuan, and the deep shale was collected from the Wells Yi201 and Lu202. Study their basic mechanical parameters, failure modes, and wave velocity responses through laboratory tests. Research shows that with the increase of bedding angle, the deformation mode has the trend from elastic deformation to plastic deformation in high-stress state. When the bedding angles are 0°, 30°, and 45°, the weak bedding surface plays a leading role in the formation of the failure surface trend. As the bedding angle increases to 60° and 90°, its influence is weakened. The tensile strength, elastic modulus, and wave velocity decrease with the increase of bedding angle. The compressive strength and Poisson’s ratio have the law of U-type change, there are higher values at 0° and 90°, and the lowest values are at 30°. The brittleness index first increases and then decreases with the increase of the bedding angle. The tensile strength and Poisson’s ratio of outcrop shale and deep shale are close, but the compressive strength of deep shale is only 1/3 of outcrop shale, the elastic modulus is only 3/4 of outcrop shale, and the failure of deep shale is accompanied by instability failure.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Ke Yang ◽  
Zhen Wei ◽  
Xiaolou Chi ◽  
Yonggang Zhang ◽  
Litong Dou ◽  
...  

Due to the influence of the component structure and combination modes, the mechanical characteristics and failure modes of the coal-rock composite show different characteristics from the monomer. In order to explore the effect of different coal-rock ratios on the deformation and the failure law of the combined sample, the RMT rock mechanics test system and acoustic emission real-time monitoring system are adopted to carry out uniaxial compression tests on coal, sandstone, and three kinds of combined samples. The evolution rules of the mechanical parameters of the combined samples, such as the uniaxial compressive strength, elastic modulus, and Poisson’s ratio, are obtained. The expansion and failure deformation characteristics of the combined sample are analyzed. Furthermore, the evolution laws of the fractal and acoustic emission signals are combined to reveal the crack propagation and failure mechanism of the combined samples. The results show that the compressive strength and elastic modulus of the combined sample increase with the decrease of the coal-rock ratios, and Poisson’s ratio decreases with the decrease of the coal-rock ratios. The strain softening weakens at the postpeak stage, which shows an apparent brittle failure. The combined sample of coal and sandstone has different degrees of damages under load. The coal is first damaged with a high degree of breakage, with obvious tensile failure. The acoustic emission energy value presents different stage characteristics with increasing load. Crackling sound occurs in the destroy section before the sample reaches the peak, along with small coal block ejection and the partial destruction. The energy value fluctuates violently, with the appearance of several peaks. At the postpeak stage, the coal samples expand rapidly with a loud crackling sound in the destroy section, and the energy value increases dramatically. The crack propagation induces the damage in the sandstone; when the energy reaches the limit value, the instantaneous release of elastic energy leads to the overall structural instability.


2018 ◽  
Vol 10 (1) ◽  
pp. 289-296 ◽  
Author(s):  
Ligang Zhang ◽  
Xiao Fei Fu ◽  
G. R. Liu ◽  
Shi Bin Li ◽  
Wei Li ◽  
...  

AbstractIn this work, the intensive theoretical study and laboratory tests are conducted to evaluate the craters morphology via the flat-ended indenter test, relationship of indentation hardness (HRI) and uniaxial compressive strength (UCS). Based on the stress distribution, failure process and Mohr–Coulomb failure criterion, the mathematical mechanical models are presented to express the formation conditions of “pulverized zone” and “volume break”. Moreover, a set of equations relating the depth and apex angle of craters, the ratio of indentation hardness and uniaxial compressive strength, the angle of internal friction and Poisson’s ratio are obtained. The depth, apex angle of craters and ratio of indentation hardness and uniaxial compressive strength are all affected by the angle of internal friction and Poisson’s ratio. The proposed models are also verified by experiments of rock samples which are cored from Da Qing oilfield, the percentage error between the test and calculated results for depth, apex angle of craters and the ratio of HRI and UCS are mainly in the range of –1.41%–8.92%, –5.91%–3.94% and –8.22%–13.22% respectively for siltstone, volcanic tuff, volcanic breccia, shale, sand stone and glutenite except mudstone, which demonstrates that our proposed models are robust and effective for brittle rock.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3244 ◽  
Author(s):  
Francesco Baino ◽  
Elisa Fiume

Porosity is recognized to play a key role in dictating the functional properties of bioactive scaffolds, especially the mechanical performance of the material. The mechanical suitability of brittle ceramic and glass scaffolds for bone tissue engineering applications is usually evaluated on the basis of the compressive strength alone, which is relatively easy to assess. This work aims to investigate the porosity dependence of the elastic properties of silicate scaffolds based on the 45S5 composition. Highly porous glass–ceramic foams were fabricated by the sponge replica method and their elastic modulus, shear modulus, and Poisson’s ratio were experimentally determined by the impulse excitation technique; furthermore, the failure strength was quantified by compressive tests. As the total fractional porosity increased from 0.52 to 0.86, the elastic and shear moduli decreased from 16.5 to 1.2 GPa and from 6.5 to 0.43 GPa, respectively; the compressive strength was also found to decrease from 3.4 to 0.58 MPa, whereas the Poisson’s ratio increased from 0.2692 to 0.3953. The porosity dependences of elastic modulus, shear modulus and compressive strength obeys power-law models, whereas the relationship between Poisson’s ratio and porosity can be described by a linear approximation. These relations can be useful to optimize the design and fabrication of porous biomaterials as well as to predict the mechanical properties of the scaffolds.


2021 ◽  
Vol 5 (8) ◽  
pp. 203
Author(s):  
V. Sathish Kumar ◽  
N. Ganesan ◽  
P. V. Indira

The primary aim of this research is to find an alternative for Portland cement using inorganic geopolymers. This study investigated the effect of steel and polypropylene fibres hybridisation on ternary blend geopolymer concrete (TGPC) engineering properties using fly ash, ground granulated blast furnace slag (GGBS) and metakaolin as the source materials. The properties like compressive strength, splitting tensile strength, flexural strength and modulus of elasticity of ternary blend geopolymer concrete. The standard tests were conducted on TGPC with steel fibres, polypropylene fibres and a combination of steel and polypropylene fibres in hybrid form. A total number of 45 specimens were tested and compared to determine each property. The grade of concrete considered was M55. The variables studied were the volume fraction of fibres, viz. steel fibres (0%, 0.5% and 1%) and polypropylene fibres (0%, 0.1%, 0.15%, 0.2% and 0.25%). The experimental results reveal that the addition of fibres in a hybrid form enhances the mechanical properties of TGPC. The increase in the compressive strength was nominal, and a significant improvement was observed in splitting tensile strength, flexural strength, and modulus of elasticity. Also, an attempt to obtain the relation between the different engineering properties was made with different volume fractions of fibre.


Sign in / Sign up

Export Citation Format

Share Document