scholarly journals INVESTIGATION OF MECHANICAL BEHAVIOUR OF SISAL BAMBOO AND EPOXY REINFORCED NATURAL COMPOSITE

Author(s):  
Gobi K ◽  
Kaleeswaran M ◽  
Amaresh D ◽  
Dhanush R

Now-a-days, The natural sisal/bamboos from renewable natural resources offer the potential to act as a reinforcing material for polymer composites alternative to the use of glass, carbon and wood. Among various natural fibers, sisal or bamboo is most widely used natural fiber due to its advantages like easy availability, low density, low production cost and satisfactory mechanical properties. For a composite material, its mechanical behavior depends on many factors such as fiber content, orientation, types, length etc. Attempts have been made in this research work to study the effect of loading on the physical and mechanical behavior of sisal/bamboo reinforced epoxy-based hybrid composites.

2020 ◽  
pp. 129-146
Author(s):  
Navasingh Rajesh Jesudoss Hynes ◽  
Ramakrishnan Sankaranarayanan ◽  
Jegadeesaperumal Senthil Kumar ◽  
Sanjay Mavinkere Rangappa ◽  
Suchart Siengchin

2019 ◽  
Vol 27 (02) ◽  
pp. 1950099 ◽  
Author(s):  
AHMED ABDUL BASEER ◽  
D. V. RAVI SHANKAR ◽  
M. MANZOOR HUSSAIN

Fiber reinforced polymer (FRP) composites are appealing for use in structural building applications because of their high strength-to-weight and stiffness-to-weight proportions, corrosion resistance, lightweight, possibly high durability, along with free design characteristics. The aim of this research work was to develop high strength natural fiber-based composite plates for the possible application in the shear strengthening of the reinforced concrete structure. In the experimental modeling, the composites were fabricated using glass, flax and kenaf fibers in treated and untreated conditions. This paper studied and analyzed the interfacial and tensile properties of fiber reinforced hybrid composites such as flax/glass and kenaf/glass by using the simulation approach, i.e. Deep Neural Network (DNN) with weight optimization. For optimizing the weights in DNN, Oppositional based FireFly Optimization (OFFO) is proposed. All the optimal results exhibit in the way that the accomplished error values between the output of the experimental values and the predicted qualities are firmly equivalent to zero in the designed system.


Author(s):  
M. Dinesh ◽  
R. Asokan ◽  
S. Vignesh ◽  
Chitikena Phani Kumar ◽  
Rajulapati Ravichand

Over the years, application of composite materials has got wider. So there is a necessity for development of new materials to satisfy the environmental requirements. It is viable through the process of hybridization of natural fibers to synthetic fibers. This investigation is carried out to determine the tensile and flexural strength of hybrid composites with various fiber combinations and stacking sequence. Thus it is easy to identify the natural fiber hybrid combination with high mechanical properties under static and varying thermal load conditions. The various fiber materials are meticulously chosen and three conventional and six different hybrid laminates were fabricated with various stacking sequences of selected fibers using hand layup technique. The tensile and flexural properties are determined through mechanical testing and compared with conventional materials. The failure morphologies are captured and investigated with zoom optical cameras. On analyzing the results, it is observed that carbon-flax hybrid composites exhibit nearly equivalent specific strength at a reduced cost compared to the carbon/glass fiber hybrid composites and also the effect of the stacking sequence in mechanical properties is elucidated through this study. Varying thermal load analysis reveals that there is a considerable loss in mechanical properties due to thermal exposure.


2019 ◽  
Vol 8 (3) ◽  
pp. 2450-2453

Usage of Natural Fiber Composites (NFC) is increased rapidly due to the bio degradability nature of the fibers. These natural fibers are mixed with synthetic fibers to obtain better mechanical properties. In this study, pine apple and glass fiber reinforced epoxy composites are developed and their mechanical properties were evaluated. Composites were prepared by varying the fibers content and by using hand layup process with glass moulds of size 160 x 160 x 3 mm3 . The obtained laminates were sliced as per the ASTM criterion to test the properties. Higher glass fiber content in the composite specimen obtained higher mechanical properties. The composites can be utilized for the purpose of manufacturing components like doors panels, desks, roof tops etc.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 517 ◽  
Author(s):  
Carlo Santulli

Hybrid composite laminates including carbon fibers and natural fibers, hence basalt and/or vegetable ones, draw on the experiences accumulated in studying the hybridization of fiberglass with carbon or natural fibers. Yet, in the case of carbon/natural fiber composites, the sense is different: in particular, the idea is to accept the reduction of properties from bare carbon fiber composites and the unavoidable complication in processing, induced by hybridization. The compensation obtained, which offers a rationale to this operation, is the improved toughness and a significant modification of the different modes of failure. This would bring a higher energy absorption and a substantially more effective damage tolerance. The aforementioned characteristics are particularly of interest in the case of flexural properties, impact properties, and residual post-impact performance.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2276
Author(s):  
Rozyanty Rahman ◽  
Syed Zhafer Firdaus Syed Putra ◽  
Shayfull Zamree Abd Rahim ◽  
Irwana Nainggolan ◽  
Bartłomiej Jeż ◽  
...  

The demand for natural fiber hybrid composites for various applications has increased, which is leading to more research being conducted on natural fiber hybrid composites due to their promising mechanical properties. However, the incompatibility of natural fiber with polymer matrix limits the performance of the natural fiber hybrid composite. In this research work, the mechanical properties and fiber-to-matrix interfacial adhesion were investigated. The efficiency of methyl methacrylate (MMA)-esterification treatments on composites’ final product performance was determined. The composite was prepared using the hand lay-up method with varying kenaf bast fiber (KBF) contents of 10, 15, 20, 25, 30, 35 (weight%) and hybridized with glass fiber (GF) at 5 and 10 (weight%). Unsaturated polyester (UPE) resin and methyl ethyl ketone peroxide (MEKP) were used as binders and catalysts, respectively. Scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR) were used to examine the effects of MMA-esterification treatment on tensile strength and morphology (tensile fracture and characterization of MMA-esterification treatment) of the composite fabricated. The tensile strength of MMA-treated reinforced UPE and hybrid composites are higher than that of untreated composites. As for MMA treatment, 90 min of treatment showed the highest weight percent gain (WPG) and tensile strength of KBF-reinforced UPE composites. It can be concluded that the esterification of MMA on the KBF can lead to better mechanical properties and adhesion between the KFB and the UPE matrix. This research provides a clear reference for developing hybrid natural fibers, thus contributing to the current field of knowledge related to GF composites, specifically in transportation diligences due to their properties of being lightweight, superior, and involving low production cost.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
M. Balasubramanian ◽  
Thozhuvur Govindaraman Loganathan ◽  
R. Srimath

Purpose The purpose of this study is to understand the behavior of hybrid bio-composites under varied applications. Design/methodology/approach Fabrication methods and material characterization of various hybrid bio-composites are analyzed by studying the tensile, impact, flexural and hardness of the same. The natural fiber is a manufactured group of assembly of big or short bundles of fiber to produce one or more layers of flat sheets. The natural fiber-reinforced composite materials offer a wide range of properties that are suitable for many engineering-related fields like aerospace, automotive areas. The main characteristics of natural fiber composites are durability, low cost, low weight, high specific strength and equally good mechanical properties. Findings The tensile properties like tensile strength and tensile modulus of flax/hemp/sisal/Coir/Palmyra fiber-reinforced composites are majorly dependent on the chemical treatment and catalyst usage with fiber. The flexural properties of flax/hemp/sisal/coir/Palmyra are greatly dependent on fiber orientation and fiber length. Impact properties of flax/hemp/sisal/coir/Palmyra are depended on the fiber content, composition and orientation of various fibers. Originality/value This study is a review of various research work done on the natural fiber bio-composites exhibiting the factors to be considered for specific load conditions.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Reza Mahjoub ◽  
Jamaludin Bin Mohamad Yatim ◽  
Abdul Rahman Mohd Sam

According to environmental concerns and financial problems, natural fibers have become interesting and fascinating nowadays to be used as an industrial material and structural material for rehabilitating of structures. Oil palm empty fruit bunch fiber (OPF) is a natural fiber which is found a lot in tropical areas. Scientists have used OPF fiber with many types of resins such as epoxy, polypropylene, polyester, and phenol formaldehyde. Therefore, this paper focused on the properties of OPF fiber and gathered mechanical properties of OPF composites (OPF as reinforcement of polymer) reported by other researchers in terms of tensile and flexural properties. Furthermore, the chemical surface modification methods to solve the interfacial bonding of fiber and polymer were mentioned. In addition, the results of hybrid composites of OPF were also discussed in this paper. Meanwhile, the results of composites were compared to pure resin properties and also the stress-strain diagram and internal strain energy of composites were considered. Besides, the effects of adding OPF to other composites to make a new hybrid composite were indicated. Finally, it is clear that the use of oil palm fiber composites for structural elements for bearing loads is not recommended but the usage of OPF composites for secondary structural elements may be recommended due to future researches.


BioResources ◽  
2015 ◽  
Vol 10 (4) ◽  
pp. 8580-8603 ◽  
Author(s):  
Suhad D. Salman ◽  
Zulkiflle Leman ◽  
Mohamed T. H. Sultan ◽  
Mohamad R. Ishak ◽  
Francisco Cardona

This paper reviews the published and ongoing research work on kenaf/synthetic and Kevlar®/cellulosic fiber-reinforced composite materials. The combination of natural fibers with synthetic fibers in hybrid composites has become increasingly applied in several different fields of technology and engineering. As a result, a better balance between performance and cost is expected to be achieved by 2015, through appropriate material design. This review is intended to provide an outline of the essential outcomes of those hybrid composite materials currently utilized, focusing on processing and mechanical and structural properties.


1970 ◽  
Vol 3 (1) ◽  
pp. 1-6 ◽  
Author(s):  
HMMA Rashed ◽  
MA Islam ◽  
FB Rizvi

For Environmental concern on synthetic fibers (such as glass, carbon, ceramic fibers, etc.) natural fibers such as flax, hemp, jute, kenaf, etc. are widely used. In this research work, jute fiber reinforced polypropylene matrix composites have been developed by hot compression molding technique with varying process parameters, such as fiber condition (untreated and alkali treated), fiber sizes (1, 2 and 4 mm) and percentages (5%, 10% and 15% by weight). The developed jute fiber reinforced composites were then characterized by tensile test, optical and scanning electron microscopy. The results show that tensile strength increases with increase in the fiber size and fiber percentage; however, after a certain size and percentage, the tensile strength decreases again. Compared to untreated fiber, no significant change in tensile strength has been observed for treated jute fiber reinforcement. Fractographic observation suggests the fracture behavior to be brittle in nature. Keywords: Natural fiber, Jute fiber, Polypropylene, Composite, Tensile strength.  DOI: 10.3329/jname.v3i1.923 Journal of Naval Architecture and Marine Engineering 3(2006) 1-6


Sign in / Sign up

Export Citation Format

Share Document